

An Introduction to Network
Programming with Java

Jan Graba

An Introduction to Network
Programming with Java

Jan Graba, BA, PGCE, MSc
Faculty of ACES
Sheffield Hallam University
UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006923894

ISBN-10: 1-84628-380-9
ISBN-13: 978-1-84628-380-2

Printed on acid-free paper

© Jan Graba 2007

New and revised edition of An Introduction to Network Programming with Java published by Addison
Wesley, 2003, ISBN 0321116143

Sun, Sun Microsystems, the Sun Logo, the Java programming language, J2SE 5.0, and JavaBeans are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Encarta, MSN, and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Whilst we have made considerable efforts to contact all holders of copyright material contained in this
book, we may have failed to locate some of them. Should holders wish to contact the Publisher, we will
be happy to come to some arrangement with them.

Printed in the United States of America (SB)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media, LLC

springer.com

Preface

The market in general-purpose Java texts is an exceptionally well populated one, as
can be seen from just a cursory examination of the programming language section of
any major bookshop. Surprisingly, the market in Java network programming texts is
a much less exploited one, featuring very few texts. It is true that the better general-
purpose Java texts provide some guidance on aspects of network programming, but
this almost invariably takes the form of rather superficial coverage, often relegated to
the end of the particular text and offering little more than an outline of the relevant
concepts. Even those few texts that are devoted specifically to network programming
in Java (and one or two are very good indeed) are rather thick tomes that are
probably of greatest use as reference texts. The truth of this assertion appears to be
reinforced by the absence of practical exercises from such texts.
 When I began work on the first edition of this work, my declared intention was to
write a more 'streamlined' work that could serve equally as the core text on an
undergraduate module and as the quick, clear, 'no-nonsense' guide required by a busy
IT professional. Numerous examples and associated screenshots were provided, with
the examples 'stripped down' to their bare essentials in order to avoid overwhelming
the reader with too much detail. There is, of course, a level of detail below which it
is impossible to go without omitting some of the essentials and this led to a few
examples running over multiple pages. However, a conscious effort was made to
keep this to a minimum and to provide adequate program comments where this did
occur.
 It was gratifying to find that the first edition was well received, but the time has
now come to replace it with an updated version. The changes in this second edition
fall into three categories:

• language changes, largely reflecting the significant changes introduced
by J2SE 5.0 (but also including one or two changes brought in by earlier
versions of Java);

• the updating of support software, particularly that used for Web
applications;

• new material, some related to the changes introduced by J2SE 5.0
(otherwise known as Java 5) and some extending earlier coverage.

A summary of the major elements of these changes is given below.

Language Changes

These mostly affect the example programs and the model solutions provided on the
associated Web site. However, there are occasional, passing references to some of
these new features in the main body of the text where it is considered
appropriate. The main language changes introduced are listed below.

• Replacement of the BufferedReader+InputStreamReader combination with
the single Scanner class, with consequent erradication of the need to use the

vi An Introduction to Network Programming with Java

type 'wrapper' classes to convert String input into numeric values (a major
improvement on the traditional method for obtaining input).

• Associated with the above, replacement of the BufferedReader+FileReader
combination with Scanner+File and that of the PrintWriter+FileWriter
combination with PrintWriter+File for serial disc file I/O.

• Replacement of the cumbersome addWindowListener(new
WindowAdapter... method for closing down GUI applications with
setDefaultCloseOperation(EXIT_ON_CLOSE). (This had been available
since J2SE 1.3, but had deliberately not been included in the original text
due to the earlier method being the one still used by most people at that
time.)

• The formatting of numeric output (particularly decimal output) via method
printf.

• The inclusion of generics in the declaration of Vectors, with the associated
'auto-boxing' and 'auto-unboxing' of elements.

• Introduction of the 'enhanced for' loop where appropriate.

Updating of Support Software

• Replacement of the JSWDK Web server with Apache Tomcat.
• Replacement of the JavaBean Development Kit (BDK) with the Bean

Builder for the testing of JavaBeans.
• Removal of the section on the now defunct HTMLConverter utility and

updating of the example browsers to Internet Explorer 6 and Firefox 1.5.

New Material

• Coverage of non-blocking I/O (introduced in J2SE 1.4), but retaining
coverage of the more traditional blocking I/O.

• The use of JDBC with the DataSource interface (also introduced in J2SE
1.4), but maintaining coverage of the more traditional DriverManager class
approach. The associated examples are no longer confined to the use of MS
Access, but have been extended to include MySQL. The significant
advantages to large-scale, commercial databases of using DataSource in
preference to DriverManager are made clear to the reader.

• As part of good practice, the above DataSource technique makes use of a
DAO (Data Access Object) to encapsulate access to the database, so that
data manipulation code is separated from business logic.

 On the CD-ROM accompanying this text may be found the executable file for
installing J2SE 5.0 onto MS Windows platforms (available via free download from
the Sun site, of course). In addition to this, the CD contains all example code and
several media files (the latter for use with material in the final two chapters). Model
solutions for end-of-chapter exercises are accessible by lecturers and other
authorised individuals from the companion Web site (accessible via
http://homepage.ntlworld.com/jan.graba/javanet.html). Finally, there is a document
entitled Java Environment Installation that provides downloading and installation

Preface vii

instructions for those additional software elements for which permission for
inclusion on the CD was not forthcoming. This document also contains installation
instructions (and downloading instructions, which shouldn't be required) for J2SE
5.0 itself.
 I sincerely hope that your programming experiences while using this text give you
some of the sense of satisfaction that I have derived from writing it. Of course, along
with such satisfaction comes the occasional (?) infuriating sense of frustration when
things just won't work, but you wouldn't want things to be too easy ... would you??
:-)

Jan
22nd Feb 2006

Contents

Chapter 1 Basic Concepts, Protocols and Terminology 1

1.1 Clients, Servers and Peers ... 1
1.2 Ports and Sockets .. 2
1.3 The Internet and IP Addresses .. 3
1.4 Internet Services, URLs and DNS .. 4
1.5 TCP ... 5
1.6 UDP .. 7

Chapter 2 Starting Network Programming in Java 9

2.1 The InetAddress Class .. 9
2.2 Using Sockets ... 12
 2.2.1 TCP Sockets 12
 2.2.2 Datagram (UDP) Sockets ... 18
2.3 Network Programming with GUIs ... 28
2.4 Downloading Web Pages ... 37
Exercises ... 41

Chapter 3 Multithreading and Multiplexing .. 51

3.1 Thread Basics ... 51
3.2 Using Threads in Java ... 52
 3.2.1 Extending the Thread Class ... 53
 3.2.2 Explicitly Implementing the Runnable Interface 57
3.3 Multithreaded Servers ... 60
3.4 Locks and Deadlock .. 65
3.5 Synchronising Threads .. 67
3.6 Non-Blocking Servers ... 74
 3.6.1 Overview ... 74
 3.6.2 Implementation ... 76
 3.6.3 Further Details .. 86
Exercises .. 88

Chapter 4 File Handling .. 91

4.1 Serial Access Files .. 91
4.2 File Methods ... 97
4.3 Redirection .. 99
4.4 Command Line Parameters .. 101
4.5 Random Access Files ... 102
4.6 Serialisation .. 109
4.7 File I/O with GUIs ... 113
4.8 Vectors ... 120
4.9 Vectors and Serialisation ... 123

Contents ix

Exercises ... 132

Chapter 5 Remote Method Invocation (RMI) 136

5.1 The Basic RMI Process .. 136
5.2 Implementation Details .. 137
5.3 Compilation and Execution .. 141
5.4 Using RMI Meaningfully ... 143
5.5 RMI Security .. 153
Exercises ... 156

Chapter 6 CORBA ... 158

6.1 Background and Basics ... 158
6.2 The Structure of a Java IDL Specification 159
6.3 The Java IDL Process .. 163
6.4 Using Factory Objects ... 173
6.5 Object Persistence ... 184
6.6 RMI-IIOP .. 184
Exercises .. 186

Chapter 7 Java Database Connectivity (JDBC) 188

7.1 The Vendor Variation Problem ... 188
7.2 SQL and Versions of JDBC .. 189
7.3 Creating an ODBC Data Source ... 190
7.4 Simple Database Access .. 191
7.5 Modifying the Database Contents ... 199
7.6 Transactions .. 203
7.7 Meta Data .. 204
7.8 Using a GUI to Access a Database ... 207
7.9 Scrollable ResultSets in JDBC 2.0 .. 210
7.10 Modifying Databases via Java Methods ... 215
7.11 Using the DataSource Interface .. 220

7.11.1 Overview and Support Software .. 220
7.11.2 Defining a JNDI Resource Reference 222
7.11.3 Mapping the Resource Reference onto a Real Resource 223
7.11.4 Obtaining the Data Source Connection 225
7.11.5 Data Access Objects .. 226

Exercises .. 232

Chapter 8 Servlets .. 234

8.1 Servlet Basics .. 234
8.2 Setting up the Servlet API ... 235
8.3 Creating a Web Application .. 237
8.4 The Servlet URL and the Invoking Web Page 239
8.5 Servlet Structure ... 240
8.6 Testing a Servlet .. 242
8.7 Passing Data .. 242

x An Introduction to Network Programming with Java

8.8 Sessions ... 249
8.9 Cookies .. 260
8.10 Accessing a Database Via a Servlet .. 268
Exercises .. 275

Chapter 9 JavaServer Pages (JSPs) .. 278

9.1 The Rationale behind JSPs ... 278
9.2 Compilation and Execution ... 279
9.3 JSP Tags .. 280
9.4 Implicit JSP Objects .. 283
9.5 Collaborating with Servlets ... 285
9.6 JSPs in Action ... 285
9.7 Error Pages .. 291
9.8 Using JSPs to Access Remote Databases 294
Exercises .. 295

Chapter 10 JavaBeans .. 297

10.1 Introduction to the Bean Builder .. 298
10.2 Creating a JavaBean ... 301
10.3 Exposing a Bean's Properties ... 307
10.4 Making Beans Respond to Events ... 311
10.5 Using JavaBeans within an Application .. 315
10.6 Bound Properties ... 317
10.7 Using JavaBeans in JSPs ... 324
 10.7.1 The Basic Procedure .. 324
 10.7.2 Calling a Bean's Methods Directly 326
 10.7.3 Using HTML Tags to Manipulate a Bean's Properties 330
Exercises .. 342

Chapter 11 Introduction to Enterprise JavaBeans 345

11.1 Categories of EJB ... 345
11.2 Basic Structure of an EJB ... 346
11.3 Packaging and Deployment .. 349
11.4 Client Programs .. 351
11.5 Entity EJBs ... 353

Chapter 12 Multimedia ... 359

12.1 Transferring and Displaying Images Easily 360
12.2 Transferring Media Files .. 365
12.3 Playing Sound Files ... 370
12.4 The Java Media Framework ... 372
Exercises ... 379

Chapter 13 Applets ... 380

13.1 Applets and JApplets .. 380

Contents xi

13.2 Applet Basics and the Development Process 381
13.3 The Internal Operation of Applets .. 385
13.4 Using Images in Applets .. 392
 13.4.1 Using Class Image ... 392
 13.4.2 Using Class ImageIcon .. 397
13.5 Scaling Images .. 400
13.6 Using Sound in Applets .. 401
Exercises .. 405

Appendix A Structured Query Language (SQL) 406

Appendix B Deployment Descriptors for EJBs 411

Appendix C Further Reading ... 414

Index ... 417

1 Basic Concepts, Protocols and Terminology

Learning Objectives
After reading this chapter, you should:

• have a high level appreciation of the basic means by which
messages are sent and received on modern networks;

• be familiar with the most important protocols used on networks;
• understand the addressing mechanism used on the Internet;
• understand the basic principles of client/server programming.

The fundamental purpose of this opening chapter is to introduce the underpinning
network principles and associated terminology with which the reader will need to be
familiar in order to make sense of the later chapters of this book. The material
covered here is entirely generic (as far as any programming language is concerned)
and it is not until the next chapter that we shall begin to consider how Java may be
used in network programming. If the meaning of any term covered here is not clear
when that term is later encountered in context, the reader should refer back to this
chapter to refresh his/her memory.
 It would be very easy to make this chapter considerably larger than it currently is,
simply by including a great deal of dry, technical material that would be unlikely to
be of any practical use to the intended readers of this book. However, this chapter is
intentionally brief, the author having avoided the inclusion of material that is not of
relevance to the use of Java for network programming. The reader who already has a
sound grasp of network concepts may safely skip this chapter entirely.

1.1 Clients, Servers and Peers

The most common categories of network software nowadays are clients and servers.
These two categories have a symbiotic relationship and the term client/server
programming has become very widely used in recent years. It is important to
distinguish firstly between a server and the machine upon which the server is
running (called the host machine), since I.T. workers often refer loosely to the host
machine as 'the server'. Though this common usage has no detrimental practical
effects for the majority of I.T. tasks, those I.T. personnel who are unaware of the
distinction and subsequently undertake network programming are likely to be caused
a significant amount of conceptual confusion until this distinction is made known to
them.
 A server, as the name implies, provides a service of some kind. This service is
provided for clients that connect to the server's host machine specifically for the
purpose of accessing the service. Thus, it is the clients that initiate a dialogue with
the server. (These clients, of course, are also programs and are not human clients!)
Common services provided by such servers include the 'serving up' of Web pages

2 An Introduction to Network Programming with Java

(by Web servers) and the downloading of files from servers' host machines via the
File Transfer Protocol (FTP servers). For the former service, the corresponding
client programs would be Web browsers (such as Netscape Communicator or
Microsoft Explorer). Though a client and its corresponding server will normally run
on different machines in a real-world application, it is perfectly possible for such
programs to run on the same machine. Indeed, it is often very convenient (as will be
seen in subsequent chapters) for server and client(s) to be run on the same machine,
since this provides a very convenient ‘sandbox’ within which such applications may
be tested before being released (or, more likely, before final testing on separate
machines). This avoids the need for multiple machines and multiple testing
personnel.
 In some applications, such as messaging services, it is possible for programs on
users’ machines to communicate directly with each other in what is called peer-to-
peer (or P2P) mode. However, for many applications, this is either not possible or
prohibitively costly in terms of the number of simultaneous connections required.
For example, the World Wide Web simply does not allow clients to communicate
directly with each other. However, some applications use a server as an
intermediary, in order to provide ‘simulated ‘ peer-to-peer facilities. Alternatively,
both ends of the dialogue may act as both client and server. Peer-to-peer systems are
beyond the intended scope of this text, though, and no further mention will be made
of them.

1.2 Ports and Sockets

These entities lie at the heart of network communications. For anybody not already
familiar with the use of these terms in a network programming context, the two
words very probably conjure up images of hardware components. However,
although they are closely associated with the hardware communication links
between computers within a network, ports and sockets are not themselves hardware
elements, but abstract concepts that allow the programmer to make use of those
communication links.
 A port is a logical connection to a computer (as opposed to a physical connection)
and is identified by a number in the range 1-65535. This number has no
correspondence with the number of physical connections to the computer, of which
there may be only one (even though the number of ports used on that machine may
be much greater than this). Ports are implemented upon all computers attached to a
network, but it is only those machines that have server programs running on them
for which the network programmer will refer explicitly to port numbers. Each port
may be dedicated to a particular server/service (though the number of available ports
will normally greatly exceed the number that is actually used). Port numbers in the
range 1-1023 are normally set aside for the use of specified standard services, often
referred to as 'well-known' services. For example, port 80 is normally used by Web
servers. Some of the more common well-known services are listed in Section 1.4.
Application programs wishing to use ports for non-standard services should avoid
using port numbers 1-1023. (A range of 1024-65535 should be more than enough for
even the most prolific of network programmers!)

Basic Concepts, Protocols and Terminology 3

 For each port supplying a service, there is a server program waiting for any
requests. All such programs run together in parallel on the host machine. When a
client attempts to make connection with a particular server program, it supplies the
port number of the associated service. The host machine examines the port number
and passes the client’s transmission to the appropriate server program for
processing.
 In most applications, of course, there are likely to be multiple clients wanting the
same service at the same time. A common example of this requirement is that of
multiple browsers (quite possibly thousands of them) wanting Web pages from the
same server. The server, of course, needs some way of distinguishing between
clients and keeping their dialogues separate from each other. This is achieved via the
use of sockets. As stated earlier, a socket is an abstract concept and not an element
of computer hardware. It is used to indicate one of the two end-points of a
communication link between two processes. When a client wishes to make
connection to a server, it will create a socket at its end of the communication link.
Upon receiving the client's initial request (on a particular port number), the server
will create a new socket at its end that will be dedicated to communication with that
particular client. Just as one hardware link to a server may be associated with many
ports, so too may one port be associated with many sockets. More will be said about
sockets in Chapter 2.

1.3 The Internet and IP Addresses

An internet (lower-case 'i') is a collection of computer networks that allows any
computer on any of the associated networks to communicate with any other
computer located on any of the other associated networks (or on the same network,
of course). The protocol used for such communication is called the Internet Protocol
(IP). The Internet (upper-case 'I') is the world's largest IP-based network. Each
computer on the Internet has a unique IP address, the current version of which is
IPv4 (Internet Protocol version 4). This represents machine addresses in what is
called quad notation. This is made up of four eight-bit numbers (i.e., numbers in
the decimal range 0-255), separated by dots. For example, 131.122.3.219 would be
one such address. Due to a growing shortage of IPv4 addresses, IPv4 is due to be
replaced with IPv6, the draft standard for which was published on the 10th of
August, 1998. IPv6 uses 128-bit addresses, which provide massively more
addresses. Many common Internet applications already work with IPv6 and it is
expected that IPv6 will gradually replace IPv4, with the two coexisting for a number
of years during a transition period.
 Recent years have witnessed an explosion in the growth and use of the Internet. As
a result, there has arisen a need for a programming language with features designed
specifically for network programming. Java provides these features and does so in a
platform-independent manner, which is vital for a heterogeneous network such as
the Internet. Java is sometimes referred to as 'the language of the Internet' and it is
the use of Java in this context that has had a major influence on the popularisation of
the language. For many programmers, the need to program for the Internet is one of
the main reasons, if not the reason, for learning to program in Java.

4 An Introduction to Network Programming with Java

1.4 Internet Services, URLs and DNS

Whatever the service provided by a server, there must be some established protocol
governing the communication that takes place between server and client. Each end
of the dialogue must know what may/must be sent to the other, the format in which
it should be sent, the sequence in which it must be sent (if sequence matters) and, for
'open-ended' dialogues, how the dialogue is to be terminated. For the standard
services, such protocols are made available in public documents, usually by either
the Internet Engineering Task Force (IETF) or the World Wide Web Consortium
(W3C). Some of the more common services and their associated ports are shown in
Figure 1.1. For a more esoteric or 'bespoke' service, the application writer must
establish a protocol and convey it to the intended users of that service.

Protocol
name

Port
number

Nature of service

Echo 7 The server simply echoes the data
sent to it. This is useful for testing
purposes.

Daytime 13 Provides the ASCII representation of
the current date and time on the
server.

FTP-data 20 Transferring files. (FTP uses two
ports.)

FTP 21 Sending FTP commands like PUT
and GET.

Telnet 23 Remote login and command line
interaction.

SMTP 25 E-mail. (Simple Mail Transfer
Protocol.)

HTTP 80 HyperText Transfer Protocol
(the World Wide Web protocol).

NNTP 119 Usenet. (Network News
Transfer Protocol.)

 Table 1.1 Some well-known network services.

 A URL (Uniform Resource Locator) is a unique identifier for any resource
located on the Internet. It has the following structure (in which BNF notation is
used):

<protocol>://<hostname>[:<port>][/<pathname>][/<filename>[#<section>]]

For example:

 http://java.sun.com/j2se/1.5.0/download.jsp

Basic Concepts, Protocols and Terminology 5

For a well-known protocol, the port number may be omitted and the default port
number will be assumed. Thus, since the example above specifies the HTTP
protocol (the protocol of the Web) and does not specify on which port of the host
machine the service is available, it will be assumed that the service is running on
port 80 (the default port for Web servers). If the file name is omitted, then the server
sends a default file from the directory specified in the path name. (This default file
will commonly be called index.html or default.html.) The 'section' part of the URL
(not often specified) indicates a named 'anchor' in an HTML document. For
example, the HTML anchor in the tag

would be referred to as thisPlace by the section component of the URL.
 Since human beings are generally much better at remembering meaningful strings
of characters than they are at remembering long strings of numbers, the Domain
Name System was developed. A domain name, also known as a host name, is the
user-friendly equivalent of an IP address. In the previous example of a URL, the
domain name was java.sun.com. The individual parts of a domain name don't
correspond to the individual parts of an IP address. In fact, domain names don't
always have four parts (as IPv4 addresses must have).
 Normally, human beings will use domain names in preference to IP addresses, but
they can just as well use the corresponding IP addresses (if they know what they
are!). The Domain Name System provides a mapping between IP addresses and
domain names and is held in a distributed database. The IP address system and the
DNS are governed by ICANN (the Internet Corporation for Assigned Names and
Numbers), which is a non-profitmaking organisation. When a URL is submitted to a
browser, the DNS automatically converts the domain name part into its numeric IP
equivalent.

1.5 TCP

In common with all modern computer networks, the Internet is a packet-switched
network, which means that messages between computers on the Internet are broken
up into blocks of information called packets, with each packet being handled
separately and possibly travelling by a completely different route from that of other
such packets from the same message. IP is concerned with the routing of these
packets through an internet. Introduced by the American military during the Cold
War, it was designed from the outset to be robust. In the event of a military strike
against one of the network routers, the rest of the network had to continue to
function as normal, with messages that would have gone through the damaged router
being re-routed. IP is responsible for this re-routing. It attaches the IP address of the
intended recipient to each packet and then tries to determine the most efficient route
available to get to the ultimate destination (taking damaged routers into account).
 However, since packets could still arrive out of sequence, be corrupted or even
not arrive at all (without indication to either sender or intended recipient that

6 An Introduction to Network Programming with Java

anything had gone wrong), it was decided to place another protocol layer on top of
IP. This further layer was provided by TCP (Transmission Control Protocol), which
allowed each end of a connection to acknowledge receipt of IP packets and/or
request retransmission of lost or corrupted packets. In addition, TCP allows the
packets to be rearranged into their correct sequence at the receiving end. IP and TCP
are the two commonest protocols used on the Internet and are almost invariably
coupled together as TCP/IP. TCP is the higher level protocol that uses the lower
level IP.
 For Internet applications, a four-layer model is often used, which is represented
diagrammatically in Figure 1.1 below. The transport layer will often comprise the
TCP protocol, but may be UDP (described in the next section), while the internet
layer will always be IP. Each layer of the model represents a different level of
abstraction, with higher levels representing higher abstraction. Thus, although
applications may appear to be communicating directly with each other, they are
actually communicating directly only with their transport layers. The transport and
internet layers, in their turn, communicate directly only with the layers immediately
above and below them, while the host-to-network layer communicates directly only
with the IP layer at each end of the connection. When a message is sent by the
application layer at one end of the connection, it passes through each of the lower
layers. As it does so, each layer adds further protocol data specific to the particular
protocol at that level. For the TCP layer, this process involves breaking up the data
packets into TCP segments and adding sequence numbers and checksums; for the IP
layer, it involves placing the TCP segments into IP packets called datagrams and
adding the routing details. The host-to-network layer then converts the digital data
into an analogue form suitable for transmission over the carrier wire, sends the data
and converts it back into digital form at the receiving end.

 Figure 1.1 The 4-Layer Network Model

 At the receiving end, the message travels up through the layers until it reaches the
receiving application layer. As it does so, each layer converts the message into a
form suitable for receipt by the next layer (effectively reversing the corresponding
process carried out at the sending end) and carries out checks appropriate to its own

Application Layer

Internet Layer (IP) Internet Layer (IP)

Application Layer

Transport Layer (E.g., TCP) Transport Layer (E.g., TCP)

path

Logical

Host-to-network layer

Basic Concepts, Protocols and Terminology 7

protocol. If recalculation of checksums reveals that some of the data has been
corrupted or checking of sequence numbers shows that some data has not been
received, then the transport layer requests re-transmission of the corrupt/missing
data. Otherwise, the transport layer acknowledges receipt of the packets. All of this
is completely transparent to the application layer. Once all the data has been
received, converted and correctly sequenced, it is presented to the recipient
application layer as though that layer had been in direct communication with the
sending application layer. The latter may then send a response in exactly the same
manner (and so on). In fact, since TCP provides full duplex transmission, the two
ends of the connection may be sending data simultaneously.
 The above description has deliberately hidden many of the low-level details of
implementation, particularly the tasks carried out by the host-to-network layer. In
addition, of course, the initial transmission may have passed through several routers
and their associated layers before arriving at its ultimate destination. However, this
high-level view covers the basic stages that are involved and is quite sufficient for
our purposes.
 Another network model that is often referred to is the seven-layer Open Systems
Interconnection (OSI) model. However, this model is an unnecessarily complex one
for our purposes and is better suited to non-TCP/IP networks anyway.

1.6 UDP

Most Internet applications use TCP as their transport mechanism. Unfortunately, the
checks built into TCP to make it such a robust protocol do not come without a cost.
The overhead of providing facilities such as confirmation of receipt and re-
transmission of lost or corrupted packets means that TCP is a relatively slow
transport mechanism. For many applications (e.g., file transfer), this does not really
matter greatly. For these applications, it is much more important that the data arrives
intact and in the correct sequence, both of which are guaranteed by TCP. For some
applications, however, these factors are not the most important criteria and the
relatively slow throughput speed provided by TCP is simply not feasible. Such
applications include the playing of audio and video while the associated files are
being downloaded, via what is called streaming. One of the most popular streaming
technologies is called RealAudio. RealAudio does not use TCP, because of its large
overhead. This and other such applications use User Datagram Protocol (UDP).
UDP is an unreliable protocol, since:

• it doesn't guarantee that each packet will arrive;
• it doesn't guarantee that packets will be in the right order.

UDP doesn't re-send a packet if it is missing or there is some other error, and it
doesn't assemble packets into the correct order. However, it is significantly faster
than TCP. For applications such as the streaming of audio or video, losing a few bits
of data is much better than waiting for re-transmission of the missing data. The
major objective in these two applications is to keep playing the sound/video without

8 An Introduction to Network Programming with Java

interruption. In addition, it is possible to build error-checking code into the UDP
data streams to compensate for the missing data.

2 Starting Network Programming in Java

Learning Objectives
After reading this chapter, you should :

• know how to determine the host machine's IP address via a Java
program;

• know how to use TCP sockets in both client programs and server
programs;

• know how to use UDP sockets in both client programs and server
programs;

• appreciate the convenience of Java's stream classes and the
consistency of the interface afforded by them;

• appreciate the ease with which GUIs can be added to network
programs;

• know how to check whether ports on a specified machine are
running services;

• know how to use Java to render Web pages.

Having covered fundamental network protocols and techniques in a generic fashion
in Chapter 1, it is now time to consider how those protocols may be used and the
techniques implemented in Java. Core package java.net contains a number of very
useful classes that allow programmers to carry out network programming very
easily. Package javax.net, introduced in J2SE 1.4, contains factory classes for
creating sockets in an implementation-independent fashion. Using classes from
these packages (primarily from the former), the network programmer can
communicate with any server on the Internet or implement his/her own Internet
server.

2.1 The InetAddress Class

One of the classes within package java.net is called InetAddress, which handles
Internet addresses both as host names and as IP addresses. Static method getByName
of this class uses DNS (Domain Name System) to return the Internet address of a
specified host name as an InetAddress object. In order to display the IP address from
this object, we can simply use method println (which will cause the object's
toString method to be executed). Since method getByName throws the checked
exception UnknownHostException if the host name is not recognised, we must
either throw this exception or (preferably) handle it with a catch clause. The
following example illustrates this.

10 An Introduction to Network Programming with Java

Example

import java.net.*;
import java.util.*;

public class IPFinder
{
 public static void main(String[] args)
 {
 String host;
 Scanner input = new Scanner(System.in);

 System.out.print("\n\nEnter host name: ");
 host = input.next();
 try
 {
 InetAddress address =
 InetAddress.getByName(host);
 System.out.println("IP address: "
 + address.toString());
 }
 catch (UnknownHostException uhEx)
 {
 System.out.println("Could not find " + host);
 }
 }
}
The output from a test run of this program is shown in Figure 2.1.

 Figure 2.1 Using method getByName to retrieve IP address of a specified host.

Starting Network Programming in Java 11

 It is sometimes useful for Java programs to be able to retrieve the IP address of
the current machine. The example below shows how to do this.

Example

import java.net.*;

public class MyLocalIPAddress
{
 public static void main(String[] args)
 {
 try
 {
 InetAddress address =
 InetAddress.getLocalHost();
 System.out.println(address);
 }
 catch (UnknownHostException uhEx)
 {
 System.out.println(
 "Could not find local address!");
 }
 }
}

Output from this program when run on the author's office machine is shown in
Figure 2.2.

 Figure 2.2 Retrieving the current machine's IP address.

12 An Introduction to Network Programming with Java

2.2 Using Sockets

As described in Chapter 1, different processes (programs) can communicate with
each other across networks by means of sockets. Java implements both TCP/IP
sockets and datagram sockets (UDP sockets). Very often, the two communicating
processes will have a client/server relationship. The steps required to create
client/server programs via each of these methods are very similar and are outlined in
the following two sub-sections.

2.2.1 TCP Sockets

A communication link created via TCP/IP sockets is a connection-orientated link.
This means that the connection between server and client remains open throughout
the duration of the dialogue between the two and is only broken (under normal
circumstances) when one end of the dialogue formally terminates the exchanges (via
an agreed protocol). Since there are two separate types of process involved (client
and server), we shall examine them separately, taking the server first. Setting up a
server process requires five steps...

1. Create a ServerSocket object.

The ServerSocket constructor requires a port number (1024-65535, for non-reserved
ones) as an argument. For example:

 ServerSocket servSock = new ServerSocket(1234);

In this example, the server will await ('listen for') a connection from a client on port
1234.

2. Put the server into a waiting state.

The server waits indefinitely ('blocks') for a client to connect. It does this by calling
method accept of class ServerSocket, which returns a Socket object when a
connection is made. For example:

Socket link = servSock.accept();

3. Set up input and output streams.

Methods getInputStream and getOutputStream of class Socket are used to get
references to streams associated with the socket returned in step 2. These streams
will be used for communication with the client that has just made connection. For a
non-GUI application, we can wrap a Scanner object around the InputStream object
returned by method getInputStream, in order to obtain string-orientated input (just
as we would do with input from the standard input stream, System.in). For example:

 Scanner input = new Scanner(link.getInputStream());

Starting Network Programming in Java 13

Similarly, we can wrap a PrintWriter object around the OutputStream object
returned by method getOutputStream. Supplying the PrintWriter constructor with a
second argument of true will cause the output buffer to be flushed for every call of
println (which is usually desirable). For example:

 PrintWriter output =
 new PrintWriter(link.getOutputStream(),true);

4. Send and receive data.

Having set up our Scanner and PrintWriter objects, sending and receiving data is
very straightforward. We simply use method nextLine for receiving data and method
println for sending data, just as we might do for console I/O. For example:

 output.println("Awaiting data...");
 String input = input.nextLine();

5. Close the connection (after completion of the dialogue).

This is achieved via method close of class Socket. For example:

link.close();

The following example program is used to illustrate the use of these steps.

Example

In this simple example, the server will accept messages from the client and will keep
count of those messages, echoing back each (numbered) message. The main
protocol for this service is that client and server must alternate between sending and
receiving (with the client initiating the process with its opening message, of course).
The only details that remain to be determined are the means of indicating when the
dialogue is to cease and what final data (if any) should be sent by the server. For this
simple example, the string "***CLOSE***" will be sent by the client when it
wishes to close down the connection. When the server receives this message, it will
confirm the number of preceding messages received and then close its connection to
this client. The client, of course, must wait for the final message from the server
before closing the connection at its own end.
 Since an IOException may be generated by any of the socket operations, one or
more try blocks must be used. Rather than have one large try block (with no
variation in the error message produced and, consequently, no indication of
precisely what operation caused the problem), it is probably good practice to have
the opening of the port and the dialogue with the client in separate try blocks. It is
also good practice to place the closing of the socket in a finally clause, so that,
whether an exception occurs or not, the socket will be closed (unless, of course, the
exception is generated when actually closing the socket, but there is nothing we can
do about that). Since the finally clause will need to know about the Socket

14 An Introduction to Network Programming with Java

object, we shall have to declare this object within a scope that covers both the try
block handling the dialogue and the finally block. Thus, step 2 shown above will
be broken up into separate declaration and assignment. In our example program, this
will also mean that the Socket object will have to be explicitly initialised to null
(as it will not be a global variable).

Since a server offering a public service would keep running indefinitely, the call
to method handleClient in our example has been placed inside an ‘infinite’ loop,
thus:

 do
 {
 handleClient();
 }while (true);

 In the code that follows (and in later examples), port 1234 has been chosen for the
service, but it could just as well have been any integer in the range 1024-65535.
Note that the lines of code corresponding to each of the above steps have been
clearly marked with emboldened comments.

//Server that echoes back client's messages.
//At end of dialogue, sends message indicating number of
//messages received. Uses TCP.

import java.io.*;
import java.net.*;
import java.util.*;

public class TCPEchoServer
{
 private static ServerSocket servSock;
 private static final int PORT = 1234;

 public static void main(String[] args)
 {
 System.out.println("Opening port...\n");
 try
 {
 servSock = new ServerSocket(PORT); //Step 1.
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to attach to port!");
 System.exit(1);
 }
 do
 {
 handleClient();

Starting Network Programming in Java 15

 }while (true);
 }

 private static void handleClient()
 {
 Socket link = null; //Step 2.

 try
 {
 link = servSock.accept(); //Step 2.

 Scanner input =
 new Scanner(link.getInputStream());//Step 3.
 PrintWriter output =
 new PrintWriter(
 link.getOutputStream(),true); //Step 3.

 int numMessages = 0;
 String message = input.nextLine(); //Step 4.
 while (!message.equals("***CLOSE***"))
 {
 System.out.println("Message received.");
 numMessages++;
 output.println("Message " + numMessages
 + ": " + message); //Step 4.
 message = input.nextLine();
 }
 output.println(numMessages
 + " messages received.");//Step 4.
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }

 finally
 {
 try
 {
 System.out.println(
 "\n* Closing connection... *");
 link.close(); //Step 5.
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to disconnect!");
 System.exit(1);

16 An Introduction to Network Programming with Java

 }
 }
 }
}

Setting up the corresponding client involves four steps...

1. Establish a connection to the server.

We create a Socket object, supplying its constructor with the following two
arguments:

• the server's IP address (of type InetAddress);
• the appropriate port number for the service.

(The port number for server and client programs must be the same, of course!)

For simplicity's sake, we shall place client and server on the same host, which will
allow us to retrieve the IP address by calling static method getLocalHost of class
InetAddress. For example:

 Socket link =
 new Socket(InetAddress.getLocalHost(),1234);

2. Set up input and output streams.

These are set up in exactly the same way as the server streams were set up (by
calling methods getInputStream and getOutputStream of the Socket object that was
created in step 2).

3. Send and receive data.

The Scanner object at the client end will receive messages sent by the PrintWriter
object at the server end, while the PrintWriter object at the client end will send
messages that are received by the Scanner object at the server end (using methods
nextLine and println respectively).

4. Close the connection.

This is exactly the same as for the server process (using method close of class
Socket).

 The code below shows the client program for our example. In addition to an input
stream to accept messages from the server, our client program will need to set up an
input stream (as another Scanner object) to accept user messages from the keyboard.
As for the server, the lines of code corresponding to each of the above steps have
been clearly marked with emboldened comments.

Starting Network Programming in Java 17

import java.io.*;
import java.net.*;
import java.util.*;

public class TCPEchoClient
{
 private static InetAddress host;
 private static final int PORT = 1234;

 public static void main(String[] args)
 {
 try
 {
 host = InetAddress.getLocalHost();
 }
 catch(UnknownHostException uhEx)
 {
 System.out.println("Host ID not found!");
 System.exit(1);
 }
 accessServer();
 }

 private static void accessServer()
 {
 Socket link = null; //Step 1.

 try
 {
 link = new Socket(host,PORT); //Step 1.

 Scanner input =
 new Scanner(link.getInputStream()); //Step 2.

 PrintWriter output =
 new PrintWriter(
 link.getOutputStream(),true); //Step 2.

 //Set up stream for keyboard entry...
 Scanner userEntry = new Scanner(System.in);

 String message, response;
 do
 {
 System.out.print("Enter message: ");
 message = userEntry.nextLine();
 output.println(message); //Step 3.
 response = input.nextLine(); //Step 3.

18 An Introduction to Network Programming with Java

 System.out.println("\nSERVER> "+response);
 }while (!message.equals("***CLOSE***"));
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }

 finally
 {
 try
 {
 System.out.println(
 "\n* Closing connection... *");
 link.close(); //Step 4.
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to disconnect!");
 System.exit(1);
 }
 }
 }
}

 For the preceding client-server application to work, TCP/IP must be installed and
working. How are you to know whether this is the case for your machine? Well, if
there is a working Internet connection on your machine, then TCP/IP is running. In
order to start the application, first open two command windows and then start the
server running in one window and the client in the other. (Make sure that the server
is running first, in order to avoid having the client program crash!) The example
screenshots in Figures 2.3 and 2.4 show the dialogues between the server and two
consecutive clients for this application. Note that, in order to stop the
TCPEchoServer program, Ctrl-C has to be entered from the keyboard.

2.2.2 Datagram (UDP) Sockets

Unlike TCP/IP sockets, datagram sockets are connectionless. That is to say, the
connection between client and server is not maintained throughout the duration of
the dialogue. Instead, each datagram packet is sent as an isolated transmission
whenever necessary. As noted in Chapter 1, datagram (UDP) sockets provide a
faster means of transmitting data than TCP/IP sockets, but they are unreliable.

Since the connection is not maintained between transmissions, the server does not
create an individual Socket object for each client, as it did in our TCP/IP example. A
further difference from TCP/IP sockets is that, instead of a ServerSocket object, the
server creates a DatagramSocket object, as does each client when it wants to send
datagram(s) to the server. The final and most significant difference is that

Starting Network Programming in Java 19

DatagramPacket objects are created and sent at both ends, rather than simple
strings.

Figure 2.3 Example output from the TCPEchoServer program.

Figure 2.4 Example output from the TCPEchoClient program.

20 An Introduction to Network Programming with Java

 Following the style of coverage for TCP client/server applications, the detailed
steps required for client and server will be described separately, with the server
process being covered first. This process involves the following nine steps, though
only the first eight steps will be executed under normal circumstances...

1. Create a DatagramSocket object.

Just as for the creation of a ServerSocket object, this means supplying the object's
constructor with the port number. For example:

 DatagramSocket datagramSocket =
 new DatagramSocket(1234);

2. Create a buffer for incoming datagrams.

This is achieved by creating an array of bytes. For example:

 byte[] buffer = new byte[256];

3. Create a DatagramPacket object for the incoming datagrams.

The constructor for this object requires two arguments:

• the previously-created byte array;
• the size of this array.

For example:

 DatagramPacket inPacket =
 new DatagramPacket(buffer, buffer.length);

4. Accept an incoming datagram.

This is effected via the receive method of our DatagramSocket object, using our
DatagramPacket object as the receptacle. For example:

 datagramSocket.receive(inPacket);

5. Accept the sender's address and port from the packet.

Methods getAddress and getPort of our DatagramPacket object are used for this.
For example:

 InetAddress clientAddress = inPacket.getAddress();
 int clientPort = inPacket.getPort();

Starting Network Programming in Java 21

6. Retrieve the data from the buffer.

For convenience of handling, the data will be retrieved as a string, using an
overloaded form of the String constructor that takes three arguments:

• a byte array;
• the start position within the array (= 0 here);
• the number of bytes (= full size of buffer here).

For example:

 String message = new String(inPacket.getData(),
 0,inPacket.getLength());

7. Create the response datagram.

Create a DatagramPacket object, using an overloaded form of the constructor that
takes four arguments:

• the byte array containing the response message;
• the size of the response;
• the client's address;
• the client's port number.

The first of these arguments is returned by the getBytes method of the String class
(acting on the desired String response). For example:

 DatagramPacket outPacket =
 new DatagramPacket(response.getBytes(),
 response.length(),clientAddress, clientPort);
 (Here, response is a String variable holding the return message.)

8. Send the response datagram.

This is achieved by calling method send of our DatagramSocket object, supplying
our outgoing DatagramPacket object as an argument. For example:

 datagramSocket.send(outPacket);

Steps 4-8 may be executed indefinitely (within a loop).

 Under normal circumstances, the server would probably not be closed down at all.
However, if an exception occurs, then the associated DatagramSocket should be
closed, as shown in step 9 below.

22 An Introduction to Network Programming with Java

9. Close the DatagramSocket.

This is effected simply by calling method close of our DatagramSocket object. For
example:

 datagramSocket.close();

 To illustrate the above procedure and to allow easy comparison with the
equivalent TCP/IP code, the example from Section 2.2.1 will be employed again. As
before, the lines of code corresponding to each of the above steps are indicated via
emboldened comments. Note that the numMessages part of the message that is
returned by the server is somewhat artificial, since, in a real-world application,
many clients could be making connection and the overall message numbers would
not mean a great deal to individual clients. However, the cumulative message-
numbering will serve to emphasise that there are no separate sockets for individual
clients.

There are two other differences from the equivalent TCP/IP code that are worth
noting, both concerning the possible exceptions that may be generated:

• the IOException in main is replaced with a SocketException;
• there is no checked exception generated by the close method in

the finally clause, so there is no try block.

Now for the code...

//Server that echoes back client's messages.
//At end of dialogue, sends message indicating number of
//messages received. Uses datagrams.

import java.io.*;
import java.net.*;

public class UDPEchoServer
{
 private static final int PORT = 1234;
 private static DatagramSocket datagramSocket;
 private static DatagramPacket inPacket, outPacket;
 private static byte[] buffer;

 public static void main(String[] args)
 {
 System.out.println("Opening port...\n");
 try
 {
 datagramSocket =
 new DatagramSocket(PORT); //Step 1.
 }

Starting Network Programming in Java 23

 catch(SocketException sockEx)
 {
 System.out.println(
 "Unable to attach to port!");
 System.exit(1);
 }
 handleClient();
 }

 private static void handleClient()
 {
 try
 {
 String messageIn,messageOut;
 int numMessages = 0;

 do
 {
 buffer = new byte[256]; //Step 2.
 inPacket =
 new DatagramPacket(
 buffer, buffer.length); //Step 3.
 datagramSocket.receive(inPacket);//Step 4.

 InetAddress clientAddress =
 inPacket.getAddress(); //Step 5.
 int clientPort =
 inPacket.getPort(); //Step 5.

 messageIn =
 new String(inPacket.getData(),
 0,inPacket.getLength()); //Step 6.

 System.out.println("Message received.");
 numMessages++;
 messageOut = "Message " + numMessages
 + ": " + messageIn;
 outPacket =
 new DatagramPacket(messageOut.getBytes(),
 messageOut.length(),clientAddress,
 clientPort); //Step 7.
 datagramSocket.send(outPacket); //Step 8.
 }while (true);
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }

24 An Introduction to Network Programming with Java

 finally //If exception thrown, close connection.
 {
 System.out.println(
 "\n* Closing connection... *");
 datagramSocket.close(); //Step 9.
 }
 }
}

Setting up the corresponding client requires the eight steps listed below.

1. Create a DatagramSocket object.

This is similar to the creation of a DatagramSocket object in the server program, but
with the important difference that the constructor here requires no argument, since a
default port (at the client end) will be used. For example:

 DatagramSocket datagramSocket = new DatagramSocket();

2. Create the outgoing datagram.

This step is exactly as for step 7 of the server program. For example:

 DatagramPacket outPacket =
 new DatagramPacket(message.getBytes(),
 message.length(), host, PORT);

8. Send the datagram message.

Just as for the server, this is achieved by calling method send of the
DatagramSocket object, supplying our outgoing DatagramPacket object as an
argument. For example:

 datagramSocket.send(outPacket);

Steps 4-6 below are exactly the same as steps 2-4 of the server procedure.

4. Create a buffer for incoming datagrams.

For example:
 byte[] buffer = new byte[256];

5. Create a DatagramPacket object for the incoming datagrams.

For example:
 DatagramPacket inPacket =
 new DatagramPacket(buffer, buffer.length);

Starting Network Programming in Java 25

6. Accept an incoming datagram.

For example:

 datagramSocket.receive(inPacket);

7. Retrieve the data from the buffer.

This is the same as step 6 in the server program. For example:

 String response =
 new String(inPacket.getData(),0,
 inPacket.getLength());

Steps 2-7 may then be repeated as many times as required.

8. Close the DatagramSocket.

This is the same as step 9 in the server program. For example:

 datagramSocket.close();

As was the case in the server code, there is no checked exception generated by the
above close method in the finally clause of the client program, so there will be
no try block. In addition, since there is no inter-message connection maintained
between client and server, there is no protocol required for closing down the
dialogue. This means that we do not wish to send the final '***CLOSE***' string
(though we shall continue to accept this from the user, since we need to know when
to stop sending messages at the client end). The line of code (singular, this time)
corresponding to each of the above steps will be indicated via an emboldened
comment.

Now for the code itself...

import java.io.*;
import java.net.*;
import java.util.*;

public class UDPEchoClient
{
 private static InetAddress host;
 private static final int PORT = 1234;
 private static DatagramSocket datagramSocket;
 private static DatagramPacket inPacket, outPacket;
 private static byte[] buffer;

26 An Introduction to Network Programming with Java

 public static void main(String[] args)
 {
 try
 {
 host = InetAddress.getLocalHost();
 }
 catch(UnknownHostException uhEx)
 {
 System.out.println("Host ID not found!");
 System.exit(1);
 }
 accessServer();
 }

 private static void accessServer()
 {
 try
 {
 //Step 1...
 datagramSocket = new DatagramSocket();

 //Set up stream for keyboard entry...
 Scanner userEntry = new Scanner(System.in);

 String message="", response="";
 do
 {
 System.out.print("Enter message: ");
 message = userEntry.nextLine();
 if (!message.equals("***CLOSE***"))
 {
 outPacket = new DatagramPacket(
 message.getBytes(),
 message.length(),
 host,PORT); //Step 2.
 //Step 3...
 datagramSocket.send(outPacket);
 buffer = new byte[256]; //Step 4.
 inPacket =
 new DatagramPacket(
 buffer, buffer.length);//Step 5.
 //Step 6...
 datagramSocket.receive(inPacket);
 response =
 new String(inPacket.getData(),
 0, inPacket.getLength()); //Step 7.
 System.out.println(
 "\nSERVER> "+response);

Starting Network Programming in Java 27

 }
 }while (!message.equals("***CLOSE***"));
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }

 finally
 {
 System.out.println(
 "\n* Closing connection... *");
 datagramSocket.close(); //Step 8.
 }
 }
}

 For the preceding application to work, UDP must be installed and working on the
host machine. As for TCP/IP, if there is a working Internet connection on the
machine, then UDP is running. Once again, in order to start the application, first
open two command windows and then start the server running in one window and
the client in the other. (Start the server before the client!) As before, the example
screenshots in Figures 2.5 and 2.6 show the dialogues between the server and two
clients. Observe the differences in output between this example and the
corresponding TCP/IP example. (Note that the change at the client end is simply the
rather subtle one of cumulative message-numbering.)

.

 Figure 2.5 Example output from the UDPEchoServer program

28 An Introduction to Network Programming with Java

Figure 2.6 Example output from the UDPEchoClient program (with two clients
connecting).

2.3 Network Programming with GUIs

Now that the basics of socket programming in Java have been covered, we can add
some sophistication to our programs by providing them with graphical user
interfaces (GUIs), which users have come to expect most software nowadays to
provide. In order to concentrate upon the interface to each program, rather than upon
the details of that program's processing, the examples used will simply provide
access to some of the standard services, available via 'well known' ports. Some of
these standard services were listed in Figure 1.1.

Example

The following program uses the Daytime protocol to obtain the date and time from
port 13 of user-specified host(s). It provides a text field for input of the host name
by the user and a text area for output of the host’s response. There are also two
buttons, one that the user presses after entry of the host name and the other that
closes down the program. The text area is ‘wrapped’ in a JScrollPane, to cater for
long lines of output, while the buttons are laid out on a separate panel. The
application frame itself will handle the processing of button presses, and so
implements the ActionListener interface. The window-closing code (encapsulated in
an anonymous WindowAdapter object) ensures that any socket that has been opened
is closed before exit from the program.

Starting Network Programming in Java 29

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.util.*;

public class GetRemoteTime extends JFrame
 implements ActionListener
{
 private JTextField hostInput;
 private JTextArea display;
 private JButton timeButton;
 private JButton exitButton;
 private JPanel buttonPanel;
 private static Socket socket = null;

 public static void main(String[] args)
 {
 GetRemoteTime frame = new GetRemoteTime();
 frame.setSize(400,300);
 frame.setVisible(true);

 frame.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(
 WindowEvent event)
 {
 //Check whether a socket is open...
 if (socket != null)
 {
 try
 {
 socket.close();
 }
 catch (IOException ioEx)
 {
 System.out.println(
 "\nUnable to close link!\n");
 System.exit(1);
 }
 }
 System.exit(0);
 }
 }
);
 }

30 An Introduction to Network Programming with Java

 public GetRemoteTime()
 {
 hostInput = new JTextField(20);
 add(hostInput, BorderLayout.NORTH);

 display = new JTextArea(10,15);

 //Following two lines ensure that word-wrapping
 //occurs within the JTextArea...
 display.setWrapStyleWord(true);
 display.setLineWrap(true);

 add(new JScrollPane(display),
 BorderLayout.CENTER);

 buttonPanel = new JPanel();

 timeButton = new JButton("Get date and time ");
 timeButton.addActionListener(this);
 buttonPanel.add(timeButton);

 exitButton = new JButton("Exit");
 exitButton.addActionListener(this);
 buttonPanel.add(exitButton);

 add(buttonPanel,BorderLayout.SOUTH);
 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == exitButton)
 System.exit(0);

 String theTime;

 //Accept host name from the user...
 String host = hostInput.getText();
 final int DAYTIME_PORT = 13;

 try
 {
 //Create a Socket object to connect to the
 //specified host on the relevant port...
 socket = new Socket(host, DAYTIME_PORT);

 //Create an input stream for the above Socket
 //and add string-reading functionality...

Starting Network Programming in Java 31

 Scanner input =
 new Scanner(socket.getInputStream());

 //Accept the host’s response via the
 //above stream...
 theTime = input.nextLine();

 //Add the host’s response to the text in
 //the JTextArea...
 display.append("The date/time at " + host
 + " is " + theTime + "\n");
 hostInput.setText("");
 }
 catch (UnknownHostException uhEx)
 {
 display.append("No such host!\n");
 hostInput.setText("");
 }
 catch (IOException ioEx)
 {
 display.append(ioEx.toString() + "\n");
 }

 finally
 {
 try
 {
 if (socket!=null)
 socket.close(); //Close link to host.
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to disconnect!");
 System.exit(1);
 }
 }
 }
}

 If we run this program and enter ivy.shu.ac.uk as our host name in the client's
GUI, the result will look something like that shown in Figure 2.7.

 Unfortunately, it is rather difficult nowadays to find a host that is running the
Daytime protocol. Even if one does find such a host, it may be that the user's own
firewall blocks the output from the remote server. If this is the case, then the user
will be unaware of this until the connection times out which may take some time!
The user is advised to terminate the program (with Ctrl-C) if the waiting time

32 An Introduction to Network Programming with Java

appears to be excessive. One possible way round this problem is to write one's own
'daytime server'...
 To illustrate just how easy it is to provide a server that implements the Daytime
protocol, example code for such a server is shown below. The program makes use of
class Date from package java.util to create a Date object that will automatically hold
the current day, date and time on the server's host machine. To output the date held
in the Date object, we can simply use println on the object and its toString method
will be executed implicitly (though we could specify toString explicitly, if we
wished).

Figure 2.7 Example output from the GetRemoteTime program.

import java.net.*;
import java.io.*;
import java.util.Date;

public class DaytimeServer
{
 public static void main(String[] args)
 {
 ServerSocket server;
 final int DAYTIME_PORT = 13;
 Socket socket;

Starting Network Programming in Java 33

 try
 {
 server = new ServerSocket(DAYTIME_PORT);

 do
 {
 socket = server.accept();
 PrintWriter output =
 new PrintWriter(
 socket.getOutputStream(),true);
 Date date = new Date();
 output.println(date);
 //Method toString executed in line above.

 socket.close();
 }while (true);
 }
 catch (IOException ioEx)
 {
 System.out.println(ioEx);
 }
 }
}

 The server simply sends the date and time as a string and then closes the
connection. If we run the client and server in separate command windows and enter
localhost as our host name in the client's GUI, the result should look similar to that
shown in Figure 2.7. Unfortunately, there is still a potential problem on some
systems: since a low-numbered port (i.e., below 1024) is being used, the user may
not have sufficient system rights to make use of the port. The solution in such
circumstances is simple: change the port number (in both server and client) to a
value above 1024. (E.g., change the value of DAYTIME_PORT from 13 to 1300.)

 Now for an example that checks a range of ports on a specified host and reports
on those ports that are providing a service. This works by the program trying to
create a socket on each port number in turn. If a socket is created successfully, then
there is an open port; otherwise, an IOException is thrown (and ignored by the
program, which simply provides an empty catch clause). The program creates a
text field for acceptance of the required URL(s) and sets this to an initial default
value. It also provides a text area for the program's output and buttons for checking
the ports and for exiting the program.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.net.*;
import java.io.*;

34 An Introduction to Network Programming with Java

public class PortScanner extends JFrame
 implements ActionListener
{
 private JLabel prompt;
 private JTextField hostInput;
 private JTextArea report;
 private JButton seekButton, exitButton;
 private JPanel hostPanel, buttonPanel;
 private static Socket socket = null;

 public static void main(String[] args)
 {
 PortScanner frame = new PortScanner();
 frame.setSize(400,300);
 frame.setVisible(true);

 frame.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(
 WindowEvent event)
 {
 //Check whether a socket is open...
 if (socket != null)
 {
 try
 {
 socket.close();
 }
 catch (IOException ioEx)
 {
 System.out.println(
 "\nUnable to close link!\n");
 System.exit(1);
 }
 }
 System.exit(0);
 }
 }
);
 }

 public PortScanner()
 {
 hostPanel = new JPanel();

 prompt = new JLabel("Host name: ");

Starting Network Programming in Java 35

 hostInput = new JTextField("ivy.shu.ac.uk", 25);
 hostPanel.add(prompt);
 hostPanel.add(hostInput);
 add(hostPanel,BorderLayout.NORTH);

 report = new JTextArea(10,25);
 add(report,BorderLayout.CENTER);

 buttonPanel = new JPanel();

 seekButton = new JButton("Seek server ports ");
 seekButton.addActionListener(this);
 buttonPanel.add(seekButton);

 exitButton = new JButton("Exit");
 exitButton.addActionListener(this);
 buttonPanel.add(exitButton);

 add(buttonPanel,BorderLayout.SOUTH);
 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == exitButton)
 System.exit(0);
 //Must have been the 'seek' button that was
 //pressed, so clear the output area of any
 //previous output...
 report.setText("");

 //Retrieve the URL from the input text field...
 String host = hostInput.getText();

 try
 {
 //Convert the URL string into an INetAddress
 //object...
 InetAddress theAddress =
 InetAddress.getByName(host);
 report.append("IP address: "
 + theAddress + "\n");

 for (int i = 0; i < 25; i++)
 {
 try
 {
 //Attempt to establish a socket on
 //port i...

36 An Introduction to Network Programming with Java

 socket = new Socket(host, i);

 //If no IOException thrown, there must
 //be a service running on the port...
 report.append(
 "There is a server on port "
 + i + ".\n");
 socket.close();
 }
 catch (IOException ioEx)
 {}// No server on this port
 }
 }
 catch (UnknownHostException uhEx)
 {
 report.setText("Unknown host!");
 }
 }
}

 When the above program was run for the default server (which is on the author's
local network), the output from the GUI was as shown in Figure 2.8. Unfortunately,
remote users' firewalls may block output from most of the ports for this default
server (or any other remote server), causing the program to wait for each of these
port accesses to time out. This is likely to take a very long time indeed! The reader
is strongly advised to use a local server for the testing of this program (and to get
clearance from your system administrator for port scanning, to be on the safe side).
Even when running the program with a suitable local server, be patient when
waiting for output, since this may take a minute or so, depending upon your system.

 Figure 2.8 Example output from the PortScanner program.

Starting Network Programming in Java 37

2.4 Downloading Web Pages

Just one of the multitude of useful features of Java is its ability to render HTML
pages as a browser would do, including the correct handling of hyperlinks contained
within those pages. The class used to hold a Web page in a Java program is
JEditorPane, which automatically renders HTML formatted text for any Web page
that is downloaded via the setPage method of the JEditorPane object. (It also
supports plain text and Rich Text Format, but attention will be devoted solely to
HTML formatted text here.) The handling of hyperlinks requires only a modest
amount of extra coding on the part of the Java programmer, as described in the
following paragraphs.
 If hyperlinks are contained within a downloaded page, a HyperlinkEvent is
generated when the user clicks on one of these and must be handled by a
HyperlinkListener (i.e., an object that implements the HyperlinkListener interface).
A HyperlinkEvent is also generated when the user's mouse either moves over the
hyperlink or moves away from it. Both of these actions may also cause processing
activity to take place, if the application requires this (and may be ignored if it
doesn't). In order to implement the HyperlinkListener interface, the listener object
must provide a definition for method hyperlinkUpdate, which takes the
HyperlinkEvent that occurred as its single argument. Method hyperlinkUpdate, of
course, will specify the action that is to take place when a HyperlinkEvent occurs.
 The first thing that method hyperlinkUpdate needs to ascertain is just which of the
three possible HyperlinkEvents has just occurred. Class HyperlinkEvent contains a
public inner class EventType that defines three constants for possible hyperlink
event types:

• ACTIVATED (user clicked a hyperlink);
• ENTERED (mouse moved over a hyperlink);
• EXITED (mouse moved away from a hyperlink).

Method getEventType (of class HyperlinkEvent) returns one of the above three
constants.

Example

The following program displays the contents of a file at a user-specified URL,
effectively acting as a simple browser. A text field is used to accept the user's URL
string and a JEditorPane object is used to render the Web page at the specified
URL. Since the JEditorPane's size may very well be inadequate to display the full
page, the pane is 'wrapped' in a JScrollPane object that will allow the user to scroll
both vertically and horizontally on the page. The application frame states that it
implements the ActionListener interface, thereby undertaking to provide a definition
for the actionPerformed method. This method will specify the action to be carried
out when the user presses <Enter> in the URL text field (both for the initial entry
and for any subsequent, non-hyperlink changes of URL). Since this action is the
same as that to be carried out when any hyperlink is clicked, this code has been
placed inside a separate method called showPage (to avoid code duplication).

38 An Introduction to Network Programming with Java

 As for the HyperlinkListener interface, this is implemented by a private inner
class called LinkListener (which means, of course, that it supplies a definition for
method hyperlinkUpdate). If the HyperlinkEvent object indicates that the user
clicked upon a hyperlink, then method showPage is called to display the page at the
other end of the hyperlink. If, on the other hand, either of the other two possible
hyperlink events occurred, then no action is taken in this application.
 Method showPage renders the new page by calling method setPage of the
JEditorPane object and then displays the URL of the page in the text field. Note
that, if this latter step is not carried out, a runtime error will occur!

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;
import javax.swing.*;
import javax.swing.event.*;

public class GetWebPage extends JFrame
 implements ActionListener
{
 private JLabel prompt; //Cues user to enter a URL.
 private JTextField sourceName; //Holds URL string.
 private JPanel requestPanel; //Contains prompt
 //and URL string.
 private JEditorPane contents; //Holds page.

 public static void main(String[] args)
 {
 GetWebPage frame = new GetWebPage();
 frame.setSize(700,500);
 frame.setVisible(true);

 frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
 }

 public GetWebPage()
 {
 setTitle("Simple Browser");

 requestPanel = new JPanel();
 prompt = new JLabel("Required URL: ");
 sourceName = new JTextField(25);
 sourceName.addActionListener(this);
 requestPanel.add(prompt);
 requestPanel.add(sourceName);
 add(requestPanel, BorderLayout.NORTH);
 contents = new JEditorPane();

Starting Network Programming in Java 39

 //We don't want the user to be able to alter the
 //contents of the Web page display area, so...
 contents.setEditable(false);

 //Create object that implements HyperlinkListener
 //interface...
 LinkListener linkHandler = new LinkListener();

 //Make the above object a HyperlinkListener for
 //our JEditorPane object...
 contents.addHyperlinkListener(linkHandler);

 //'Wrap' the JEditorPane object inside a
 //JScrollPane, to provide scroll bars...
 add(new JScrollPane(contents),
 BorderLayout.CENTER);
 }

 public void actionPerformed(ActionEvent event)
 //Called when the user presses <Enter>
 //after keying a URL into the text field
 //and also when a hyperlink is clicked.
 {
 showPage(sourceName.getText());
 }

 private class LinkListener
 implements HyperlinkListener
 {
 public void hyperlinkUpdate(HyperlinkEvent event)
 {
 if (event.getEventType() ==
 HyperlinkEvent.EventType.ACTIVATED)
 showPage(event.getURL().toString());
 //Other hyperlink event types ignored.
 }
 }

 private void showPage(String location)
 {
 try
 {
 //Reset page displayed on JEditorPane...
 contents.setPage(location);

 //Reset URL string in text field...
 sourceName.setText(location);
 }

40 An Introduction to Network Programming with Java

 catch(IOException ioEx)
 {
 JOptionPane.showMessageDialog(this,
 "Unable to retrieve URL",
 "Invalid URL",
 JOptionPane.ERROR_MESSAGE);
 }
 }
}

Figure 2.9 below shows some example output from running the above program.

Figure 2.9 Example output from the GetWebPage program.
(Screenshot by kind permission of Dr Ray McLaughlin.)

 Before closing this chapter, it is worth mentioning another class from the java.net
package: the URL class. This class has six possible constructors, but the only one
that is commonly used is the one that takes a String object as its single argument.
Method setPage is also overloaded, allowing the user to specify the target page as
either a String or an object of class URL. It was the first of these options that was
used in the preceding example, since it would have been pointless to create a URL
object from the string simply so that we could then pass the newly-created URL
object to the other version of setPage. Indeed, it is often the case that we can use the
URL string directly in Java, without having to create a URL object. However,
creating such an object is occasionally unavoidable. We shall encounter such a case
when we consider applets in Chapter 13.

Starting Network Programming in Java 41

 Exercises

2.1 If you haven't already done so, compile programs TCPEchoServer and
TCPEchoClient from Section 2.2.1 and then run them as described at the end
of that section.

2.2 This exercise converts the above files into a simple email server and email
client respectively. The server conversion has been done for you and is
contained in file EmailServer.java, a printed version of which appears on the
following pages for ease of reference. Some of the code for the client has also
been provided for you and is held in file EmailClient.java, a printed version
of which is also provided. You are to complete the coding for the client and
then run the server program in one command window and the client program
in each of two further command windows (so that there are two clients
communicating with the server at the same time). The details of this
simplified client-server application are given below.

• The server recognises only two users, called 'Dave' and 'Karen'.
• Each of the above users has a message box on the server that can

accept a maximum of 10 messages.
• Each user may either send a one-line message to the other or read

his/her own messages.
• A count is kept of the number of messages in each mailbox. As

another message is received, the appropriate count is incremented (if
the maximum has not been reached). When messages are read, the
appropriate count is reduced to zero.

• When sending a message, the client sends three things: the user's
name, the word 'send' and the message itself.

• When requesting reading of mail, the client sends two things: the
user's name and the word 'read'.

• As each message is received by the server, it is added to the
appropriate mailbox (if there is room). If the mailbox is full, the
message is ignored.

• When a read request is received, the server first sends an integer
indicating the number of messages (possibly 0) that will be sent and
then transmits the messages themselves (after which it reduces the
appropriate message count to 0).

• Each user is to be allowed to 'send' and/or 'read' as many times as
he/she wishes, until he/she decides to quit.

• When the user selects the 'quit' option, the client sends two things: the
user's name and the word 'quit'.

2.3 If you haven't already done so, compile and run the server program
DayTimeServer and its associated client, GetRemoteTime, from Section 2.3.

42 An Introduction to Network Programming with Java

2.4 Program Echo is similar to program TCPEchoClient from Section 2.2.1, but
has a GUI front-end similar to that of program GetRemoteTime from Section
2.3. It provides an implementation of the echo protocol (on port 7). This
implementation sends one-line messages to a server and uses the following
components:
• a text field for input of messages (in addition to the text field for input

of host name);
• a text area for the (cumulative) echoed responses from the server;
• a button to close the connection to the host.

Some of the code for this program has been provided for you in file
Echo.java, a printed copy of which appears at the end of this chapter.
Examine this code and make the necessary additions in the places indicated
by the commented lines. When you have completed the program, run it and
supply the name holly.shu.ac.uk (or that of any other convenient server) when
prompted for a server name.

//For use with exercise 2.2.

import java.io.*;
import java.net.*;
import java.util.*;

public class EmailServer
{
 private static ServerSocket serverSocket;
 private static final int PORT = 1234;
 private static final String client1 = "Dave";
 private static final String client2 = "Karen";
 private static final int MAX_MESSAGES = 10;
 private static String[] mailbox1 =
 new String[MAX_MESSAGES];
 private static String[] mailbox2 =
 new String[MAX_MESSAGES];
 private static int messagesInBox1 = 0;
 private static int messagesInBox2 = 0;

 public static void main(String[] args)
 {
 System.out.println("Opening connection...\n");
 try
 {
 serverSocket = new ServerSocket(PORT);
 }
 catch(IOException ioEx)
 {

Starting Network Programming in Java 43

 System.out.println(
 "Unable to attach to port!");
 System.exit(1);
 }
 do
 {
 try
 {
 runService();
 }
 catch (InvalidClientException icException)
 {
 System.out.println("Error: " + icException);
 }
 catch (InvalidRequestException irException)
 {
 System.out.println("Error: " + irException);
 }
 }while (true);
 }

 private static void runService()
 throws InvalidClientException,
 InvalidRequestException
 {
 try
 {
 Socket link = serverSocket.accept();

 Scanner input =
 new Scanner(link.getInputStream());
 PrintWriter output =
 new PrintWriter(
 link.getOutputStream(),true);

 String name = input.nextLine();
 String sendRead = input.nextLine();
 if (!name.equals(client1) &&
 !name.equals(client2))
 throw new InvalidClientException();
 if (!sendRead.equals("send") &&
 !sendRead.equals("read"))
 throw new InvalidRequestException();

 System.out.println("\n" + name + " "
 + sendRead + "ing mail...");

 if (name.equals(client1))

44 An Introduction to Network Programming with Java

 {
 if (sendRead.equals("send"))
 {
 doSend(mailbox2,messagesInBox2,input);
 if (messagesInBox2<MAX_MESSAGES)
 messagesInBox2++;
 }
 else
 {
 doRead(mailbox1,messagesInBox1,output);
 messagesInBox1 = 0;
 }
 }
 else //From client2.
 {
 if (sendRead.equals("send"))
 {
 doSend(mailbox1,messagesInBox1,input);
 if (messagesInBox1<MAX_MESSAGES)
 messagesInBox1++;
 }
 else
 {
 doRead(mailbox2,messagesInBox2,output);
 messagesInBox2 = 0;
 }
 }

 link.close();
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 }

 private static void doSend(String[] mailbox,
 int messagesInBox, Scanner input)
 {
 /*
 Client has requested 'sending', so server must
 read message from this client and then place
 message into message box for other client (if
 there is room).
 */
 String message = input.nextLine();
 if (messagesInBox == MAX_MESSAGES)
 System.out.println("\nMessage box full!");

Starting Network Programming in Java 45

 else
 mailbox[messagesInBox] = message;
 }

 private static void doRead(String[] mailbox,
 int messagesInBox, PrintWriter output)
 {
 /*
 Client has requested 'reading', so server must
 read messages from other client's message box and
 then send those messages to the first client.
 */
 System.out.println("\nSending " + messagesInBox
 + " message(s).\n");
 output.println(messagesInBox);
 for (int i=0; i<messagesInBox; i++)
 output.println(mailbox[i]);
 }
}

class InvalidClientException extends Exception
{
 public InvalidClientException()
 {
 super("Invalid client name!");
 }
 public InvalidClientException(String message)
 {
 super(message);
 }
}

class InvalidRequestException extends Exception
{
 public InvalidRequestException()
 {
 super("Invalid request!");
 }
 public InvalidRequestException(String message)
 {
 super(message);
 }
}

__

46 An Introduction to Network Programming with Java

//For use with exercise 2.2.

import java.io.*;
import java.net.*;
import java.util.*;

public class EmailClient
{
 private static InetAddress host;
 private static final int PORT = 1234;
 private static String name;
 private static Scanner networkInput, userEntry;
 private static PrintWriter networkOutput;

 public static void main(String[] args)
 throws IOException
 {
 try
 {
 host = InetAddress.getLocalHost();
 }
 catch(UnknownHostException uhEx)
 {
 System.out.println("Host ID not found!");
 System.exit(1);
 }

 userEntry = new Scanner(System.in);
 do
 {
 System.out.print(
 "\nEnter name ('Dave' or 'Karen'): ");
 name = userEntry.nextLine();
 }while (!name.equals("Dave")
 && !name.equals("Karen"));

 talkToServer();
 }

 private static void talkToServer() throws IOException
 {
 String option, message, response;

 do
 {

Starting Network Programming in Java 47

/***
 CREATE A SOCKET, SET UP INPUT AND OUTPUT STREAMS,
 ACCEPT THE USER'S REQUEST, CALL UP THE APPROPRIATE
 METHOD (doSend OR doRead), CLOSE THE LINK AND THEN
 ASK IF USER WANTS TO DO ANOTHER READ/SEND.
***/

 }while (!option.equals("n"));

 }

 private static void doSend()
 {
 System.out.println("\nEnter 1-line message: ");
 String message = userEntry.nextLine();
 networkOutput.println(name);
 networkOutput.println("send");
 networkOutput.println(message);
 }

 private static void doRead() throws IOException
 {

 /*********************************
 BODY OF THIS METHOD REQUIRED
 *********************************/

 }
}

__

//For use with exercise 2.4.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.util.*;

public class Echo extends JFrame
 implements ActionListener
{
 private JTextField hostInput,lineToSend;
 private JLabel hostPrompt,messagePrompt;
 private JTextArea received;

48 An Introduction to Network Programming with Java

 private JButton closeConnection;
 private JPanel hostPanel,entryPanel;
 private final int ECHO = 7;
 private static Socket socket = null;
 private Scanner input;
 private PrintWriter output;

 public static void main(String[] args)
 {
 Echo frame = new Echo();
 frame.setSize(600,400);
 frame.setVisible(true);

 frame.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 if (socket != null)
 {
 try
 {
 socket.close();
 }
 catch (IOException ioEx)
 {
 System.out.println(
 "\n* Unable to close link! *\n");
 System.exit(1);
 }
 System.exit(0);
 }
 }
 }
);
 }

 public Echo()
 {
 hostPanel = new JPanel();

 hostPrompt = new JLabel("Enter host name:");
 hostInput = new JTextField(20);
 hostInput.addActionListener(this);
 hostPanel.add(hostPrompt);
 hostPanel.add(hostInput);
 add(hostPanel, BorderLayout.NORTH);

Starting Network Programming in Java 49

 entryPanel = new JPanel();

 messagePrompt = new JLabel("Enter text:");
 lineToSend = new JTextField(15);

 //Change field to editable when
 // host name entered...
 lineToSend.setEditable(false);

 lineToSend.addActionListener(this);

 /**
 * ADD COMPONENTS TO PANEL AND APPLICATION FRAME *
 **/

 /**
 * NOW SET UP TEXT AREA AND THE CLOSE BUTTON *
 **/
 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == closeConnection)
 {
 if (socket != null)
 {
 try
 {
 socket.close();
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "\n* Unable to close link!*\n");
 System.exit(1);
 }
 lineToSend.setEditable(false);
 hostInput.grabFocus();
 }
 return;
 }

 if (event.getSource() == lineToSend)
 {

 /******************/
 * SUPPLY CODE HERE *
 *******************/

50 An Introduction to Network Programming with Java

 }

 //Must have been entry into host field...
 String host = hostInput.getText();
 try
 {

 /*******************
 * SUPPLY CODE HERE *
 *******************/

 }
 catch (UnknownHostException uhEx)
 {
 received.append("\n*** No such host! ***\n");
 hostInput.setText("");
 }
 catch (IOException ioEx)
 {
 received.append("\n*** " + ioEx.toString()
 + " ***\n");
 }
 }
}

3 Multithreading and Multiplexing

Learning Objectives
After reading this chapter, you should:

• understand what is meant by a thread (in a programming context);
• appreciate the need for multithreaded programming;
• be aware of typical circumstances under which multithreading

might be appropriate;
• know how to implement threads in Java;
• know how to implement variable locking in Java;
• be aware of the danger posed by deadlock;
• know what Java methods to use in order to improve thread

efficiency and reduce the likelihood of deadlock;
• know how to implement a multithreaded server;
• know how to implement a non-blocking server via multiplexing.

It is often the case nowadays that programs need to carry out more than one
significant task at the same time (i.e., ‘concurrently’). For example, a GUI-driven
program may be displaying a background animation while processing the user’s
foreground interactions with the interface, or a Web browser may need to download
and display the contents of a graphics file while rendering the rest of the associated
Web page. The popularity of client/server applications over the past decade has
exacerbated this demand enormously, with server programs sometimes having to
process the needs of several hundreds of clients at the same time.
 Not many years ago, each client that connected to a server would have caused a
new process to be spawned on the server. The problem with this approach is that a
fresh block of memory is set aside for each such process. While the number of
clients connecting to the server remained reasonably low, this presented no
difficulties. However, as the use of the Internet mushroomed, servers that created a
new process for each client would grind to a halt as hundreds, possibly thousands, of
clients attempted to access their services simultaneously. A way of significantly
alleviating this problem is to use what are called threads, instead of processes.
Though the use of threads cannot guarantee that a server will not crash, it greatly
reduces the likelihood of it happening by significantly increasing the number of
client programs that can be handled concurrently.

3.1 Thread Basics

A thread is a flow of control through a program. Unlike a process, a thread does not
have a separate allocation of memory, but shares memory with other threads created

52 An Introduction to Network Programming with Java

by the same application. This means that servers using threads do not exhaust their
supply of available memory and collapse under the weight of excessive demand
from clients, as they were prone to do when creating many separate processes. In
addition, the threads created by an application can share global variables, which is
often highly desirable. This does not prevent each thread from having its own local
variables, of course, since it will still have its own stack for such variables.
 Though it has been entirely transparent to us and we have had to make no explicit
programming allowance for it, we have already been making use of threads in our
Java programming. In fact, we cannot avoid using threads in Java, since each
program will have at least one thread that is launched automatically by our
machine’s JVM when that program is executed. Such a thread is created when main
is started and ‘killed’ when main terminates. If we wish to make use of further
threads, in order to ‘offload’ processing tasks onto them, then we have to program
such threads explicitly. Using more than one thread in this way is called
multithreading.
 Of course, unless we have a multiprocessor system, it is not possible to have more
than one task being executed simultaneously. The operating system, then, must have
some strategy for determining which thread is to be given use of the processor at
any given time. On PCs, threads with the same priority are each given an equal time-
slice or time quantum for execution on the processor. When the quantum expires,
the first thread is suspended and the next thread in the queue is given the processor,
and so on. If some threads require more urgent attention than others, then they may
be assigned higher priorities (allowing pre-emption to occur). Under the Solaris
operating system, a thread runs either to completion or until another higher-priority
thread becomes ready. If the latter occurs first, then the second thread pre-empts the
first and is given control of the processor. For threads with the same priority, time-
slicing is used, so that a thread does not have to wait for another thread with the
same priority to end.

3.2 Using Threads in Java

Java is unique amongst popular programming languages in making multithreading
directly accessible to the programmer, without him/her having to go through an
operating system API. Unfortunately, writing multithreaded programs can be rather
tricky and there are certain pitfalls that need to be avoided. These pitfalls are caused
principally by the need to coordinate the activities of the various threads, as will be
seen in Section 3.4.

In Java, an object can be run as a thread if it implements the inbuilt interface
Runnable, which has just one method: run. Thus, in order to implement the
interface, we simply have to provide a definition for method run. Since the inbuilt
class Thread implements this interface, there are two fundamental methods for
creating a thread class:

• create a class that extends Thread;
• create a class that does not extend Thread and specify explicitly

that it implements Runnable.

Multithreading and Multiplexing 53

Of course, if the application class already has a superclass (other than Object),
extending Thread is not an option, since Java does not support multiple inheritance.
The following two sub-sections consider each of the above methods in turn.

3.2.1 Extending the Thread Class

The run method specifies the actions that a thread is to execute and serves the same
purpose for the process running on the thread as method main does for a full
application program. Like main, run may not be called directly. The containing
program calls the start method (inherited from class Thread), which then
automatically calls run.

Class Thread has seven constructors, the two most common of which are:

• Thread()
• Thread(String<name>)

The second of these provides a name for the thread via its argument. If the first is
used, the system generates a name of the form Thread-n, where n is an integer
starting at zero and increasing in value for further threads. Thus, if three threads are
created via the first constructor, they will have names Thread-0, Thread-1 and
Thread-2 respectively. Whichever constructor is used, method getName may be
used to retrieve the name.

Example

Thread firstThread = new Thread();
Thread secondThread = new Thread("namedThread");
System.out.println(firstThread.getName());
System.out.println(secondThread.getName());

The output from the above lines would be:

Thread-0
namedThread

Note that the name of the variable holding the address of a thread is not the same as
the name of the thread! More often than not, however, we do not need to know the
latter.
 Method sleep is used to make a thread pause for a specified number of
milliseconds. For example:

 myThread.sleep(1500); //Pause for 1.5 seconds.

This suspends execution of the thread and allows other threads to be executed.
When the sleeping time expires, the sleeping thread returns to a ready state, waiting
for the processor.
 Method interrupt may be used to interrupt an individual thread. In particular, this
method may be used by other threads to ‘awaken’ a sleeping thread before that

54 An Introduction to Network Programming with Java

thread’s sleeping time has expired. Since method sleep will throw a checked
exception (an InterruptedException) if another thread invokes the interrupt method,
it must be called from within a try block that catches this exception.
 In the next example, static method random from core class Math is used to
generate a random sleeping time for each of two threads that simply display their
own names ten times. If we were to run the program without using a randomising
element, then it would simply display alternating names, which would be pretty
tedious and would give no indication that threads were being used. Method random
returns a random decimal value in the range 0-0.999…, which is then multiplied by
a scaling factor of 3000 and typecast into an int, producing a final integer value in
the range 0-2999. This randomising technique is also used in later thread examples,
again in order to avoid producing the same pattern of output from a given program.
 Note the use of extends Thread in the opening line of the class. Though this class
already implements the Runnable interface (and so has a definition of method run),
the default implementation of run does nothing and must be overridden by a
definition that we supply.

Example

public class ThreadShowName extends Thread
{
 public static void main (String[] args)
 {
 ThreadShowName thread1, thread2;

 thread1 = new ThreadShowName();
 thread2 = new ThreadShowName();

 thread1.start(); //Will call run.
 thread2.start(); //Will call run.
 }

 public void run()
 {
 int pause;
 for (int i=0; i<10; i++)
 {
 try
 {
 System.out.println(
 getName()+" being executed.");

 pause = (int)(Math.random()*3000);

 sleep(pause); //0-3 seconds.
 }
 catch (InterruptedException interruptEx)
 {

Multithreading and Multiplexing 55

 System.out.println(interruptEx);
 }
 }
 }
}

Example output from the above program is shown in Figure 3.1 below.

 Figure 3.1 Example output from the ThreadShowName program.

 In the above program, each of the two threads was carrying out exactly the same
task, which meant that each of them could be created from the same Thread class
and make use of exactly the same run method. In practice, of course, different
threads will normally carry out different tasks. If we want the threads to carry out
actions different from each other's, then we must create a separate class for each
thread (each with its own run method), as shown in the next example.

Example

In this example, we shall again create two threads, but we shall have one thread
display the message ‘Hello’ five times and the other thread output integers 1-5. For
the first thread, we shall create a class called HelloThread; for the second, we shall
create class CountThread. Note that it is not the main application class
(ThreadHelloCount, here) that extends class Thread this time, but each of the two
subordinate classes, HelloThread and CountThread. Each has its own version of the
run method.

public class ThreadHelloCount
{

56 An Introduction to Network Programming with Java

 public static void main(String[] args)
 {
 HelloThread hello = new HelloThread();
 CountThread count = new CountThread();
 hello.start();
 count.start();
 }
}

class HelloThread extends Thread
{
 public void run()
 {
 int pause;

 for (int i=0; i<5; i++)
 {
 try
 {
 System.out.println("Hello!");

 //Again, introduce an element
 //of randomness…
 pause = (int)(Math.random()*3000);

 sleep(pause);
 }
 catch (InterruptedException interruptEx)
 {
 System.out.println(interruptEx);
 }
 }
 }
}

class CountThread extends Thread
{
 int pause;

 public void run()
 {
 for (int i=0; i<5; i++)
 {
 try
 {
 System.out.println(i);
 pause=(int)(Math.random()*3000);
 sleep (pause);

Multithreading and Multiplexing 57

 }
 catch (InterruptedException interruptEx)
 {
 System.out.println(interruptEx);
 }
 }
 }
}

An example of this program’s output is shown below.

 Figure 3.2 Example output from the ThreadHelloCount program.

3.2.2 Explicitly Implementing the Runnable Interface

This is very similar to the technique described in the previous sub-section. With this
method, however, we first create an application class that explicitly implements the
Runnable interface. Then, in order to create a thread, we instantiate an object of our
Runnable class and ‘wrap’ it in a Thread object. We do this by creating a Thread
object and passing the Runnable object as an argument to the Thread constructor.
(Recall that the Thread class has seven constructors.) There are two Thread
constructors that allow us to do this:

• Thread (Runnable <object>)
• Thread(Runnable <object>, String <name>)

(The second of these allows us also to name the thread.)

58 An Introduction to Network Programming with Java

When either of these constructors is used, the Thread object uses the run method of
the Runnable object in place of its own (empty) run method.
 Once a Runnable object has been used as an argument in the Thread constructor,
we may never again need to refer to it. If this is the case, we can create such an
object anonymously and dynamically by using the operator new in the argument
supplied to the Thread constructor, as shown in the example below. However, some
people may prefer to create a named Runnable object first and then pass that to the
Thread constructor, so the alternative code is also shown. The second method
employs about twice as much code as the first, but might serve to make the process
clearer.

Example (Same effect as that of ThreadShowName)

Note that, since the thread objects in this example are not of class Thread (since
RunnableShowName does not extend Thread), they cannot make direct use of
methods getName and sleep, but must go through class Thread to make use of static
methods currentThread and sleep. The former method is used to get a pointer to the
current thread, in order to use that pointer to call method getName.

public class RunnableShowName implements Runnable
{
 public static void main(String[] args)
 {
 Thread thread1 =
 new Thread(new RunnableShowName());
 Thread thread2 =
 new Thread(new RunnableShowName());
/*
As an alternative to the above 2 lines, the following
(more long-winded) code could have been used:
 RunnableShowName runnable1 =
 new RunnableShowName();
 RunnableShowName runnable2 =
 new RunnableShowName();
 Thread thread1 = new Thread(runnable1);
 Thread thread2 = new Thread(runnable2);
*/
 thread1.start();
 thread2.start();
 }

 public void run()
 {
 int pause;
 for (int i=0; i<10; i++)
 {
 try
 {

Multithreading and Multiplexing 59

 //Use static method currentThread to get
 //reference to current thread and then call
 //method getName on that reference...
 System.out.println(
 Thread.currentThread().getName()
 + " being executed.");
 pause = (int)(Math.random() * 3000);

 //Call static method sleep...
 Thread.sleep(pause);
 }
 catch (InterruptedException interruptEx)
 {
 System.out.println(interruptEx);
 }
 }
 }
}

 As another way of implementing the above program, we could declare thread1
and thread2 to be properties of a class that implements the Runnable interface,
create an object of this class within main and have the constructor for this class
create the threads and start them running. The constructor for each of the Thread
objects still requires a Runnable argument, of course. It is the instance of the
surrounding Runnable class that has been created (identified as this) that provides
this argument, as shown in the code below.

public class RunnableHelloCount implements Runnable
{
 private Thread thread1, thread2;

 public static void main(String[] args)
 {
 RunnableHelloCount threadDemo =
 new RunnableHelloCount();
 }

 public RunnableHelloCount()
 {
 //Since current object implements Runnable, it can
 //be used as the argument to the Thread
 //constructor for each of the member threads...
 thread1 = new Thread(this);
 thread2 = new Thread(this);

 thread1.start();
 thread2.start();
 }

60 An Introduction to Network Programming with Java

 public void run()
 {
 int pause;

 for (int i=0; i<10; i++)
 {
 try
 {
 System.out.println(
 Thread.currentThread().getName()
 + " being executed.");
 pause = (int)(Math.random()*3000);
 Thread.sleep(pause);
 }
 catch (InterruptedException interruptEx)
 {
 System.out.println(interruptEx);
 }
 }
 }
}

3.3 Multithreaded Servers

There is a fundamental and important limitation associated with all the server
programs encountered so far:

• they can handle only one connection at a time.
This restriction is simply not feasible for most real-world applications and would
render the software useless. There are two possible solutions:

• use a non-blocking server;
• use a multithreaded server.

Before J2SE 1.4, there was no specific provision for non-blocking I/O in Java, so
the multithreaded option was the only feasible one for Java programmers. The
introduction of non-blocking I/O in 1.4 was a major advance for Java network
programmers and will be covered in the latter part of this chapter. For the time
being, though, we shall restrict our attention to the more long-standing (and still
widely used) implementation of servers via multithreading.
 Though inferior to the non-blocking approach, the multithreaded technique has a
couple of significant benefits:

• it offers a 'clean' implementation, by separating the task of
allocating connections from that of processing each connection;

• it is robust, since a problem with one connection will not affect
other connections.

Multithreading and Multiplexing 61

The basic technique involves a two-stage process:

1. the main thread (the one running automatically in method main)
allocates individual threads to incoming clients;

2. the thread allocated to each individual client then handles all
subsequent interaction between that client and the server (via the
thread's run method).

Since each thread is responsible for handling all further dialogue with its particular
client, the main thread can 'forget' about the client once a thread has been allocated
to it. It can then concentrate on its simple tasks of waiting for clients to make
connection and allocating threads to them as they do so. For each client-handling
thread that is created, of course, the main thread must ensure that the client-handling
thread is passed a reference to the socket that was opened for the associated client.
 The separation of responsibilities means that, if a problem occurs with the
connection to a particular client, it has no effect on the connections to other clients
and there is no general loss of service. This is a major benefit, of course.

Example

This is another echo server implementation, but one that uses multithreading to
return messages to multiple clients. It makes use of a support class called
ClientHandler that extends class Thread. Whenever a new client makes connection,
a ClientHandler thread is created to handle all subsequent communication with that
particular client. When the ClientHandler thread is created, its constructor is
supplied with a reference to the relevant socket.

Here's the code for the server...

import java.io.*;
import java.net.*;

public class MultiEchoServer
{
 private static ServerSocket serverSocket;
 private static final int PORT = 1234;

 public static void main(String[] args)
 throws IOException
 {
 try
 {
 serverSocket = new ServerSocket(PORT);
 }
 catch (IOException ioEx)
 {
 System.out.println("\nUnable to set up port!");
 System.exit(1);

62 An Introduction to Network Programming with Java

 }

 do
 {
 //Wait for client...
 Socket client = serverSocket.accept();

 System.out.println("\nNew client accepted.\n");

 //Create a thread to handle communication with
 //this client and pass the constructor for this
 //thread a reference to the relevant socket...
 ClientHandler handler =
 new ClientHandler(client);
 handler.start();//As usual, method calls run.
 }while (true);
 }
}

class ClientHandler extends Thread
{
 private Socket client;
 private Scanner input;
 private PrintWriter output;

 public ClientHandler(Socket socket)
 {
 //Set up reference to associated socket...
 client = socket;

 try
 {
 input = new Scanner(client.getInputStream());
 output = new PrintWriter(
 client.getOutputStream(),true);
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 }

 public void run()
 {
 String received;

 do
 {

Multithreading and Multiplexing 63

 //Accept message from client on
 //the socket's input stream...
 received = input.nextLine();

 //Echo message back to client on
 //the socket's output stream...
 output.println("ECHO: " + received);

 //Repeat above until 'QUIT' sent by client...
 }while (!received.equals("QUIT"));

 try
 {
 if (client!=null)
 {
 System.out.println(
 "Closing down connection...");
 client.close();
 }
 }

 catch(IOException ioEx)
 {
 System.out.println("Unable to disconnect!");
 }
 }
}

The code required for the client program is exactly that which was employed in the
TCPEchoClient program from the last chapter. However, since (i) there was only a
modest amount of code in the run method for that program, (ii) we should avoid
confusion with the run method of the Thread class and (iii) it'll make a change (!)
without being harmful, all the executable code has been placed inside main in the
MultiEchoClient program below.

import java.io.*;
import java.net.*;
import java.util.*;

public class MultiEchoClient
{
 private static InetAddress host;
 private static final int PORT = 1234;

 public static void main(String[] args)
 {
 try
 {

64 An Introduction to Network Programming with Java

 host = InetAddress.getLocalHost();
 }
 catch(UnknownHostException uhEx)
 {
 System.out.println("\nHost ID not found!\n");
 System.exit(1);
 }
 sendMessages();
 }

 private static void sendMessages()
 {
 Socket socket = null;

 try
 {
 socket = new Socket(host,PORT);

 Scanner networkInput =
 new Scanner(socket.getInputStream());
 PrintWriter networkOutput =
 new PrintWriter(
 socket.getOutputStream(),true);

 //Set up stream for keyboard entry...
 Scanner userEntry = new Scanner(System.in);

 String message, response;
 do
 {
 System.out.print(
 "Enter message ('QUIT' to exit): ");
 message = userEntry.nextLine();

 //Send message to server on the
 //socket's output stream...

 //Accept response from server on the
 //socket's intput stream...
 networkOutput.println(message);
 response = networkInput.nextLine();

 //Display server's response to user...
 System.out.println(
 "\nSERVER> " + response);
 }while (!message.equals("QUIT"));
 }
 catch(IOException ioEx)

Multithreading and Multiplexing 65

 {
 ioEx.printStackTrace();
 }

 finally
 {
 try
 {
 System.out.println(
 "\nClosing connection...");
 socket.close();
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to disconnect!");
 System.exit(1);
 }
 }
 }
}

 If you wish to test the above application, you should start the server running in
one command window and then start up two clients in separate command windows.
Sample output from such an arrangement is shown in Figure 3.3.

3.4 Locks and Deadlock

As mentioned at the start of Section 3.2, writing multithreaded programs can present
some awkward problems, primarily caused by the need to coordinate the activities
of the various threads that are running within an application. In order to illustrate
what can go wrong, consider the situation illustrated in Figure 3.4, where thread1
and thread2 both need to update a running total called sum.
 If the operation that each thread is trying to execute were an atomic operation
(i.e., one that could not be split up into simpler operations), then there would be no
problem. Though this might at first appear to be the case, this is not so. In order to
update sum, each thread will need to complete the following series of smaller
operations: read the current value of sum, create a copy of it, add the appropriate
amount to this copy and then write the new value back. The final value from the
two original update operations, of course, should be 47 (=23+5+19). However, if
both reads occur before a write takes place, then one update will overwrite the other
and the result will be either 28 (=23+5) or 42 (=23+19). The problem is that the sub-
operations from the two updates may overlap each other.

In order to avoid this problem in Java, we can require a thread to obtain a lock on
the object that is to be updated. Only the thread that has obtained the lock may then

66 An Introduction to Network Programming with Java

update the object. Any other (updating) thread must wait until the lock has been
released. Once the first thread has finished its updating, it should release the lock,
making it available to other such threads. (Note that threads requiring read-only
access do not need to obtain a lock.)

 Figure 3.3 Example output from a multithreaded server and two connected clients.

One unfortunate possibility with this system, however, is that deadlock may
occur. A state of deadlock occurs when threads are waiting for events that will never
happen. Consider the example illustrated in Figure 3.5. Here, thread1 has a lock on
resource res1, but needs to obtain a lock on res2 in order to complete its processing

Multithreading and Multiplexing 67

(so that it can release its lock on res1). At the same time, however, thread2 has a
lock on res2, but needs to obtain a lock on res1 in order to complete its processing.
Unfortunately, only good design can avoid such situations. In the next section, we
consider how locks are implemented in Java.

 Figure 3.4 Two threads attempting to update the same variable at the same time.

 Figure 3.5 An illustration of deadlock.

3.5 Synchronising Threads

Locking is achieved by placing the keyword synchronized in front of the
method definition or block of code that does the updating.

Example

 public synchronized void updateSum(int amount)
 {
 sum+=amount;
 }

If sum is not locked when the above method is invoked, then the lock on sum is
obtained, preventing any other thread from executing updateSum. All other threads
attempting to invoke this method must wait. Once the method has finished
execution, the lock is released and made available to other threads. If an object has
more than one synchronized method associated with it, then only one may be
active at any given time.

has lock needs lock

needs lock has lock

sum
thread1 thread2

add 5 add 19

res1

res2

thread1 thread2

 23

68 An Introduction to Network Programming with Java

In order to improve thread efficiency and to help avoid deadlock, the following
methods are used:

• wait();
• notify();
• notifyAll().

If a thread executing a synchronized method determines that it cannot proceed,
then it may put itself into a waiting state by calling method wait. This releases the
thread's lock on the shared object and allows other threads to obtain the lock. A call
to wait may lead to an InterruptedException, which must either be caught or
declared to be thrown by the containing (synchronized) method.
 When a synchronized method reaches completion, a call may be made to
notify, which will 'wake up' a thread that is in the waiting state. Since there is no
way of specifying which thread is to be woken, this is only really appropriate if
there is only one waiting thread. If all threads waiting for a lock on a given object
are to be woken, then we use notifyAll. However, there is still no way of determining
which thread gets control of the object. The JVM will make this decision.
 Methods wait, notify and notifyAll may only be called when the current thread has
a lock on the object (i.e., from within a synchronized method or from within a
method that has been called by a synchronized method). If any of these
methods is called from elsewhere, an IllegalMonitorStateException is thrown.

Example

This example is the classical producer-consumer problem, in which a producer is
generating instances of some resource (cars on a production line, chocolate bars on a
conveyor belt, wooden chairs in a carpenter's workshop or whatever) and a
consumer is removing instances of the resource. Though this is largely a theoretical
example, rather than a practical example of a service that might be provided by a
server program, it could be modified to involve a server providing some network
resource, such as a printing facility (though the server would probably be working
with a fixed 'pool' of printers, rather than creating new ones).
 The resource will be modelled by a Resource class, while the producer and
consumer will be modelled by a Producer class and a ConsumerClient class
respectively. The Producer class will be a thread class, extending class Thread. The
server program, ResourceServer, will create a Resource object and then a Producer
thread, passing the constructor for this thread a reference to the Resource object.
The server will then start the thread running and begin accepting connections from
ConsumerClients. As each client makes connection, the server will create an
instance of ClientThread (another Thread class), which will be responsible for
handling all subsequent dialogue with the client. The code for ResourceServer is
shown below.

import java.io.*;
import java.net.*;

public class ResourceServer

Multithreading and Multiplexing 69

{
 private static ServerSocket servSocket;
 private static final int PORT = 1234;

 public static void main(String[] args)
 throws IOException
 {
 try
 {
 servSocket = new ServerSocket(PORT);
 }
 catch (IOException e)
 {
 System.out.println("\nUnable to set up port!");
 System.exit(1);
 }

 //Create a Resource object with
 //a starting resource level of 1...
 Resource item = new Resource(1);

 //Create a Producer thread, passing a reference
 //to the Resource object as an argument to the
 //thread constructor...
 Producer producer = new Producer(item);

 //Start the Producer thread running...
 producer.start();

 do
 {
 //Wait for a client to make connection...
 Socket client = servSocket.accept();
 System.out.println("\nNew client accepted.\n");

 //Create a ClientThread thread to handle all
 //subsequent dialogue with the client, passing
 //references to both the client's socket and
 //the Resource object...
 ClientThread handler =
 new ClientThread(client,item);

 //Start the ClientThread thread running...
 handler.start();
 }while (true); //Server will run indefinitely.
 }
}

70 An Introduction to Network Programming with Java

Method addOne of Resource will be called by a Producer object and will attempt to
add one item to the resource level. Method takeOne of Resource will be called by a
ConsumerClient object and will attempt to remove/consume one item. Both of these
methods will return the new resource level. Since each of these methods will modify
the resource level, they must both be declared with the keyword synchronized.
 The code for the Producer class is shown below. As in previous examples, a
randomising feature has been included. This causes the producer to wait 0-5 seconds
between successive (attempted) increments of the resource level, so that it does not
produce so quickly that it is always at maximum (or, very briefly, one below
maximum).

class Producer extends Thread
{
 private Resource item;

 public Producer(Resource resource)
 {
 item = resource;
 }

 public void run()
 {
 int pause;
 int newLevel;

 do
 {
 try
 {
 //Add 1 to level and return new level...
 newLevel = item.addOne();
 System.out.println(
 "<Producer> New level: " + newLevel);
 pause = (int)(Math.random() * 5000);

 //'Sleep' for 0-5 seconds...
 sleep(pause);
 }
 catch (InterruptedException interruptEx)
 {
 System.out.println(interruptEx);
 }
 }while (true);
 }
}

 Just as a factory may not produce more than it can either sell or store, so the
producer normally has some maximum resource level beyond which it must not

Multithreading and Multiplexing 71

produce. In this simple example, the resource level will not be allowed to exceed 5.
Once the resource level has reached 5, production must be suspended. This is done
from method addOne by calling wait from within a loop that continuously checks
whether the resource level is still at maximum. The calling of wait suspends the
Producer thread and releases the lock on the shared resource level variable,
allowing any ConsumerClient to obtain it. When the resource level is below the
maximum, addOne increments the level and then calls method notify to 'wake up'
any waiting ConsumerClient thread.
 At the other extreme, the consumer must not be allowed to consume when there is
nothing to consume (i.e., when the resource level has reached zero). Thus, if the
resource level is at zero when method takeOne is executed, wait is called from
within a loop that continuously checks that the level is still at zero. The calling of
wait suspends the ConsumerClient thread and releases the lock on the shared
resource level variable, allowing any Producer to obtain it. When the resource level
is above zero, takeOne decrements the level and then calls method notifyAll to 'wake
up' any waiting Producer thread.
 The code for class Resource is shown below. Note that ResourceServer must have
access to the code for both Producer and Resource.

class Resource
{
 private int numResources;
 private final int MAX = 5;

 public Resource(int startLevel)
 {
 numResources = startLevel;
 }

 public int getLevel()
 {
 return numResources;
 }

 public synchronized int addOne()
 {
 try
 {
 while (numResources >= MAX)
 wait();
 numResources++;

 //'Wake up' any waiting consumer...
 notifyAll();
 }
 catch (InterruptedException interruptEx)
 {
 System.out.println(interruptEx);

72 An Introduction to Network Programming with Java

 }
 return numResources;
 }

 public synchronized int takeOne()
 {
 try
 {
 while (numResources == 0)
 wait();
 numResources--;

 //'Wake up' waiting producer...
 notify();
 }
 catch (InterruptedException interruptEx)
 {
 System.out.println(interruptEx);
 }
 return numResources;
 }
}

 The ClientThread objects created by ResourceServer handle all resource requests
from their respective clients. In this simplified example, clients will be allowed to
request only one item at a time from the resource 'pile', which they will do simply by
sending a '1'. When a client wishes to disconnect from the service, it will send a '0'.
The code for ClientThread is shown below. Just as for classes Producer and
Resource, this code must be accessible by ResourceServer. Note that, although
ClientThread calls takeOne to 'consume' an item of resource on behalf of the client,
the only thing that is actually sent to the client is a symbolic message of
confirmation that the request has been granted. Only when the material on
serialisation has been covered at the end of the next chapter will it be clear how
general resource 'objects' may actually be sent to a client.

import java.io.*;
import java.net.*;
import java.util.*;

class ClientThread extends Thread
{
 private Socket client;
 private Resource item;
 private Scanner input;
 private PrintWriter output;

 public ClientThread(Socket socket, Resource resource)
 {

Multithreading and Multiplexing 73

 client = socket;
 item = resource;

 try
 {
 //Create input and output streams
 //on the socket...
 input = new Scanner(client.getInputStream());
 output = new PrintWriter(
 client.getOutputStream(),true);
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 }

 public void run()
 {
 String request = "";

 do
 {
 request = input.nextLine();
 if (request.equals("1"))
 {
 item.takeOne();//If none available,
 //wait until resource(s)
 //available (and thread is
 //at front of thread queue).
 output.println("Request granted.");
 }
 }while (!request.equals("0"));

 try
 {
 System.out.println(
 "Closing down connection...");
 client.close();
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to close connection to client!");
 }
 }
}

74 An Introduction to Network Programming with Java

 All that remains to be done now is to produce the code for the ConsumerClient
class. However, the required code for this class is very similar in structure to that of
MultiEchoClient from Section 3.3 (as, indeed, it would be to most client programs),
and so production of this code is one of the exercises at the end of the chapter. In the
meantime, the screenshots in Figures 3.6 and 3.7 show example output from
ResourceServer and two ConsumerClients.

 Figure 3.6 Example output from ResourceServer (with two clients connecting).

3.6 Non-Blocking Servers

3.6.1 Overview

Before J2SE 1.4, we could simulate non-blocking I/O by using method available of
class InputStream. The signature for this method is as follows:

 int available() throws IOException

For an InputStream object attached to a network connection, this method returns the
number of bytes received via that connection (and now in memory), but not yet read.
In order to simulate non-blocking I/O, we could create a separate connection (on the
same port) for each incoming client and repeatedly 'poll' clients in turn, using
method available to check for data on each connection. However, this is a poor
substitute for true non-blocking I/O and has never been used much.
 J2SE 1.4 introduced the New Input/Output API, often abbreviated to NIO. This
API is implemented by package java.nio and a handful of sub-packages, the most
notable of which is java.nio.channels. Instead of employing Java's traditional stream

Multithreading and Multiplexing 75

mechanism for I/O, NIO makes use of the channel concept. Essentially, rather than
being byte-orientated, as Java streams are, channels are block-orientated. This
means that data can be transferred in large blocks, rather than as individual bytes,
leading to significant speed gains. As will be seen shortly, each channel is
associated with a buffer, which provides the storage area for data that is written to
or read from a particular channel. It is even possible to make use of what are called
direct buffers, which avoid the use of intermediate Java buffers wherever possible,
allowing system level operations to be performed directly, leading to even greater
speed gains.

Figure 3.7 Output from two ConsumerClients connected to ResourceServer of Figure 3.6.

 Of greater relevance to the title of this section, though, is the mechanism for
handling multiple clients. Instead of allocating an individual thread to each client,
NIO uses multiplexing (the handling of multiple connections simultaneously by a
single entity). This is based on the use of a selector (the single entity) to monitor
both new connections and data transmissions from existing connections. Each of our
channels simply registers with the selector the type(s) of event in which it is
interested. It is possible to use channels in either blocking or non-blocking mode,
but we shall be using them in non-blocking mode. The use of a selector to monitor
events means that, instead of having a separate thread allocated to each connection,

76 An Introduction to Network Programming with Java

we can have one thread (or more, if we wish) monitoring several channels at once.
This avoids problems such as operating system limits, deadlocks and thread safety
violations that may occur with the one thread per connection approach.
 Though the multiplexing approach offers significant advantages over the
multithreaded one, its implementation is notably more complex. However, most of
the original I/O classes have, in fact, been redesigned to use channels as their
underlying mechanism, which means that developers may reap some of the benefits
of NIO without changing their programming. If greater speed is required, though, it
will be necessary to employ NIO directly. The next sub-section provides the
necessary detail to allow you to do this.

3.6.2 Implementation

The channels associated with Sockets and ServerSockets are, unsurprisingly, called
SocketChannels and ServerSocketChannels respectively. Classes SocketChannel and
ServerSocketChannel are contained in package java.nio.channels. By default, the
sockets associated with such channels will operate in blocking mode, but may be
configured as non-blocking sockets by calling method configureBlocking with an
argument of false. This method is a method of the channel classes and needs to be
called on a channel object before the associated socket is created. Once this has
been done, the socket itself may be generated by calling method socket on the
channel socket. The code below shows these steps. In this code and elsewhere in this
section, the prior declaration of Socket, SocketChannel, ServerSocket and
ServerSocketChannel objects with names socket, socketChannel, serverSocket and
serverSocketChannel respectively is assumed. Note that a ServerSocketChannel
object is created not via a constructor, but via static method open of the
ServerSocketChannel class. This generates an instance of a platform-specific sub-
class that is hidden from the programmer.

 serverSocketChannel = ServerSocketChannel.open();
 serverSocketChannel.configureBlocking(false);
 serverSocket = serverSocketChannel.socket();
 ...
 //The lines below will occur rather later in the
 //program, of course.
 socketChannel = serverSocketChannel.accept();
 socketChannel.configureBlocking(false);
 socket = socketChannel.socket();

 Once the ServerSocketChannel and ServerSocket objects have been created, the
ServerSocket object needs to be bound to the port on which the server is to be run.
This involves the creation of an object of class InetSocketAddress, which is another
class introduced in J2SE 1.4 and is defined in package java.net. The lines required
to create the InetSocketAddress object and bind the ServerSocket object to the port
are shown below. The pre-declaration of a constant PORT holding the port number
is assumed.

Multithreading and Multiplexing 77

InetSocketAddress netAddress =
 new InetSocketAddress(PORT);
serverSocket.bind(netAddress); //Bind socket to port.

It is now appropriate to create an instance of class Selector, which is another of the
classes in package java.nio.channels. This object will be responsible for monitoring
both new connections and the transmission of data from and to existing connections.
Each channel (whether SocketChannel or ServerSocketChannel) must register with
the Selector object the type of event in which the channel is interested via method
register. There are four static constants of class SelectionKey (package
java.nio.channels) that are used to identify the type of event that may be monitored:

• SelectionKey.OP_ACCEPT
• SelectionKey.OP_CONNECT
• SelectionKey.OP_READ
• SelectionKey.OP_WRITE

These constants are ints with bit patterns that may be OR-ed together to form the
second argument for the register method. The two most commonly required
constants (and the ones that we shall be using) are SelectionKey.OP_ACCEPT and
SelectionKey.OP_READ. These will allow us to monitor new connections and data
transmissions from existing connections respectively. The first will be of interest to
our ServerSocketChannel object, of course, while the second will be of interest to
our SocketChannel object.
 The code for creating the Selector object and registering the respective interests of
our two channel objects is shown below. Note that, as with the ServerSocketChannel
object, a Selector object is created not via a constructor, but via static method open
that again creates an instance of a platform-specific sub-class that is hidden from the
programmer. Here and elsewhere in this section, the pre-declaration of a Selector
object called selector is assumed.

 selector = Selector.open();
 serverSocketChannel.register(selector,
 SelectionKey.OP_ACCEPT);
 ...
 //The line below will occur rather later in the
 //program, of course.
 socketChannel.register(selector,
 SelectionKey.OP_ READ);

 The final 'top level' step that needs to be carried out is the setting up of a Buffer
object (package java.nio) to provide the shared data structure for the
SocketChannels associated with connecting clients. Class Buffer itself is an abstract
class, and so no objects of this class can be created, but it has seven sub-classes from
which objects may be created:

• ByteBuffer

78 An Introduction to Network Programming with Java

• CharBuffer
• IntBuffer
• LongBuffer
• ShortBuffer
• FloatBuffer
• DoubleBuffer

The last six of these are type-specific, but ByteBuffer supports reading and writing
of the other six types. This class is easily the most commonly used and is the type
that we shall be using. It has at its heart an array for storing the data and we can
specify the size of this array via method allocate, a static method of each of the
Buffer classes. The code below shows how this may be done. Of course, the size
allocated will depend upon a number of factors related to the demands of the
particular application and the operating system for the particular platform, but, for
efficiency's sake, should be on a kilobyte boundary. A 2KB buffer allocation has
been chosen for the example and the pre-declaration of a ByteBuffer called buffer
has been assumed.

 buffer = ByteBuffer.allocate(2048);

There is also a method called allocateDirect that may be used to set up a buffer.
This attempts to allocate the required memory as direct memory, so that data does
not need to be copied to an intermediate buffer before being written to disc. This
means that there is the potential for I/O operations to be performed considerably
more quickly. Whether the use of direct buffers is appropriate or desirable (and there
will be a cost associated with the use of them, in terms of system resources) depends
upon the needs of the particular application and the characteristics of the underlying
operating system. In practice, multiple buffers and multiple threads (in thread pools)
will be needed for heavily used servers.
 Once all of the above preparatory steps have been executed, the server will enter a
traditional do...while(true) loop that accepts connecting clients and
processes their data. The first step within this loop is a call to method select on the
Selector object. This returns the number of events of the type(s) that are being
monitored and have occurred. This method is very efficient and appears to be based
on the Unix system call of the same name. Here's an example of its use, employing
the same Selector object called selector as was used previously in this section:

 int numKeys = selector.select();

If no events have occurred since the last call of select, then execution loops back to
this call until there is at least one event detected.
 For each event that is detected on a particular call to select, an object of class
SelectionKey (package java.nio.channels) is generated and contains all the
information pertaining to the particular event. The set of SelectionKeys created by a
given call to select is called the selected set. The selected set is generated by a call
to method selectedKeys of the Selector object and is placed into a Java Set object.
An Iterator object associated with the selected set is then created by a call to the Set

Multithreading and Multiplexing 79

object's iterator method. The lines to generate the selected set and its iterator are
shown below.

 Set eventKeys = selector.selectedKeys();
 Iterator keyCycler = eventKeys.iterator();

Using the above Iterator object, we can now work our way through the individual
SelectionKey objects, making use of the Iterator methods hasNext and next. As we
retrieve each SelectionKey from the set, we need to typecast from type Object
(which is how each key is held within the Set object) into type SelectionKey. Here is
the code required for detection and retrieval of each key:

 while (keyCycler.hasNext())
 {
 SelectionKey key =
 (SelectionKey)keyCycler.next();

At this point, we don't know the type of event with which this SelectionKey is
associated. To find this out, we need to retrieve the set of ready operations for the
current key by calling the SelectionKey method readyOps. This method returns the
set of operations as a bit pattern held in an int. By AND-ing this integer with
specific SelectionKey operation constants, we can determine whether those
particular events have been generated. For our program, of course, the only two
event types of interest are SelectionKey.OP_ACCEPT and SelectionKey.OP_READ.
If the former is detected, we shall process a new connection, whilst detection of the
latter will lead to the processing of incoming data. The code for determination of
event type and the initiation of processing (but not the details of such processing just
yet) appears below.

 int keyOps = key.readyOps();

 if ((keyOps & SelectionKey.OP_ACCEPT) ==
 SelectionKey.OP_ACCEPT)
 {
 acceptConnection(key); //Pass key to
 //processing method.
 continue; //Back to start of key-processing loop.
 }
 if ((keyOps & SelectionKey.OP_READ) ==
 SelectionKey.OP_READ)
 {
 acceptData(key); //Pass key to processing method.
 }

 The processing required for a new connection has already been specified in this
section, split across two separate locations in the text, but is now brought together
for the sake of clarity:

80 An Introduction to Network Programming with Java

 socketChannel = serverSocketChannel.accept();
 socketChannel.configureBlocking(false);
 socket = socketChannel.socket();
 socketChannel.register(selector,
 SelectionKey.OP_READ);

The only additional operation that is required is the removal of the current
SelectionKey from the selected set, in order to avoid re-processing it the next time
through the loop as though it represented a new event. This is effected by calling
method remove on the selected set, a reference to which may be obtained by calling
method selectedKeys again. The remove method will have the SelectionKey as its
single argument, of course:

 selector.selectedKeys().remove(key);

The processing of data from an existing connection involves making use of the
ByteBuffer object created earlier. Buffer method clear (the purpose of which is self-
evident) should be called before each fresh reading of data into the buffer from its
associated channel. A reference to the channel is obtained by calling method
channel on the current SelectionKey and again typecasting the Object reference that
is returned. The reading itself is carried out by method read of the SocketChannel
class. This method takes the buffer as its single argument and returns an integer that
indicates the number of bytes read. The lines to obtain the SocketChannel reference,
clear the ByteBuffer and read data from the channel into the buffer are as follows:

 socketChannel = (SocketChannel)key.channel();
 buffer.clear();
 int numBytes = socketChannel.read(buffer);

In order to write the data from the buffer to the channel, it is necessary to call Buffer
method flip to reset the buffer pointer to the start of the buffer and then call method
write on the channel object, supplying the buffer as the single argument. In the
example at the end of this section (which will contain all the code accumulated
within the section), the data received will simply be echoed back to the client. Since
it may not be possible to send the entire contents of the buffer in one operation, a
while loop will be used, with Buffer method remaining being called to determine
whether there are any bytes still to be sent. Since an IOException may be generated,
this code will need to be contained within a try block, but the basic code (without
the try) is shown below.

 buffer.flip();
 while (buffer.remaining()>0)
 socketChannel.write(buffer);

Note that whereas, with the multithreading approach, we had separate streams for
input and output, the SocketChannel is a two-way conduit and provides all the I/O
requirements between server and client. Note also that reading and writing is

Multithreading and Multiplexing 81

specified with respect to the channel. It can be very easy at first viewing to interpret
socketChannel.read(buffer) as being 'read from buffer' and
socketChannel.write(buffer) as being 'write to buffer', whereas this is
precisely the opposite of what is actually happening.
 The link between client and server can break down, of course, possibly because
the connection has been closed at the client end or possibly because of some error
situation. Whatever the reason, this must be taken into account when attempting to
read from the SocketChannel. If a breakdown occurs, then the call to method read
will return -1. When this happens, the registration of the current SelectionKey with
the Selector object must be rescinded. This is done by calling method cancel on the
SelectionKey object. The socket associated with the client should also be closed.
Before this can be done, it is necessary to get a reference to the Socket object by
calling method socket on the SocketChannel object. The (attempted) closure of the
socket may fail and needs to be executed within a try block, but the example
program places this code within a (programmer-defined) method called closeSocket
(which takes the Socket object as its single argument). The code to handle the
communication breakdown as described above is shown here:

 socket = socketChannel.socket();

 if (numBytes==-1)
 {
 key.cancel();
 closeSocket(socket);

 Now that all the required steps for implementation of a non-blocking server have
been covered, this section will finish with an example that brings together all those
individual steps...

Example

This example is the multiplexing equivalent of MultiEchoServer from Section 3.3
and will allow you to compare the coding requirements of the multithreading
approach with those of the multiplexing approach. The code for the equivalent client
is not shown, since this (of course) will be identical to that shown for
MultiEchoClient. As before, the server simply echoes back all transmissions from
the client(s).

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;

public class MultiEchoServerNIO
{
 private static ServerSocketChannel

82 An Introduction to Network Programming with Java

 serverSocketChannel;
 private static final int PORT = 1234;

 private static Selector selector;
 /*
 Above Selector used both for detecting new
 connections (on the ServerSocketChannel) and for
 detecting incoming data from existing connections
 (on the SocketChannel).
 */

 public static void main(String[] args)
 {
 ServerSocket serverSocket;

 System.out.println("Opening port...\n");

 try
 {
 serverSocketChannel =
 ServerSocketChannel.open();
 serverSocketChannel.configureBlocking(false);
 serverSocket = serverSocketChannel.socket();
 /*
 ServerSocketChannel created before
 ServerSocket largely in order to configure
 latter as a non-blocking socket by calling
 the configureBlocking method of the
 ServerSocketChannel with argument of 'false'.

 (ServerSocket will have a ServerSocketChannel
 only if latter is created first.)
 */

 InetSocketAddress netAddress =
 new InetSocketAddress(PORT);

 //Bind socket to port...
 serverSocket.bind(netAddress);

 //Create a new Selector object for detecting
 //input from channels...
 selector = Selector.open();

 //Register ServerSocketChannel with Selector
 //for receiving incoming connections...
 serverSocketChannel.register(selector,
 SelectionKey.OP_ACCEPT);

Multithreading and Multiplexing 83

 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 System.exit(1);
 }

 processConnections();
 }

 private static void processConnections()
 {
 do
 {
 try
 {
 //Get number of events (new connection(s)
 //and/or data transmissions from existing
 //connection(s))...
 int numKeys = selector.select();

 if (numKeys > 0)
 {
 //Extract event(s) that have been
 //triggered ...
 Set eventKeys =
 selector.selectedKeys();

 //Set up Iterator to cycle though set
 //of events...
 Iterator keyCycler =
 eventKeys.iterator();

 while (keyCycler.hasNext())
 {
 SelectionKey key =
 (SelectionKey)keyCycler.next();

 //Retrieve set of ready ops for
 //this key (as a bit pattern)...
 int keyOps = key.readyOps();

 if (
 (keyOps & SelectionKey.OP_ACCEPT)
 == SelectionKey.OP_ACCEPT)
 {//New connection.
 acceptConnection(key);
 continue;

84 An Introduction to Network Programming with Java

 }
 if (
 (keyOps & SelectionKey.OP_READ)
 == SelectionKey.OP_READ)
 {//Data from existing client.
 acceptData(key);
 }
 }
 }
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 System.exit(1);
 }
 }while (true);
 }

 private static void acceptConnection(
 SelectionKey key) throws IOException
 {//Accept incoming connection and add to list.
 SocketChannel socketChannel;
 Socket socket;

 socketChannel = serverSocketChannel.accept();
 socketChannel.configureBlocking(false);
 socket = socketChannel.socket();
 System.out.println("Connection on "
 + socket + ".");

 //Register SocketChannel for receiving data...
 socketChannel.register(selector,
 SelectionKey.OP_READ);

 //Avoid re-processing this event as though it
 //were a new one (next time through loop)...
 selector.selectedKeys().remove(key);
 }

 private static void acceptData(SelectionKey key)
 throws IOException
 {//Accept data from existing connection.
 SocketChannel socketChannel;
 Socket socket;
 ByteBuffer buffer = ByteBuffer.allocate(2048);
 //Above used for reading/writing data from/to
 //SocketChannel.

Multithreading and Multiplexing 85

 socketChannel = (SocketChannel)key.channel();
 buffer.clear();
 int numBytes = socketChannel.read(buffer);
 System.out.println(numBytes + " bytes read.");
 socket = socketChannel.socket();

 if (numBytes==-1)
 //OP_READ event also triggered by closure of
 //connection or error of some kind. In either
 //case, numBytes = -1.
 {
 //Request that registration of this key's
 //channel with its selector be cancelled...
 key.cancel();

 System.out.println("\nClosing socket "
 + socket + "...");
 closeSocket(socket);
 }
 else
 {
 try
 {
 /*
 Reset buffer pointer to start of buffer,
 prior to reading buffer's contents and
 writing them to the SocketChannel...
 */
 buffer.flip();
 while (buffer.remaining()>0)
 socketChannel.write(buffer);
 }
 catch (IOException ioEx)
 {
 System.out.println("\nClosing socket "
 + socket + "...");
 closeSocket(socket);
 }
 }
 //Remove this event, to avoid re-processing it
 //as though it were a new one...
 selector.selectedKeys().remove(key);
 }

 private static void closeSocket(Socket socket)
 {
 try

86 An Introduction to Network Programming with Java

 {
 if (socket != null)
 socket.close();
 }
 catch (IOException ioEx)
 {
 System.out.println(
 "*** Unable to close socket! ***");
 }
 }
}

3.6.3 Further Details

Though the preceding sub-section provides enough information to allow the reader
to implement a basic non-blocking server, there are other methods that are often
required in more sophisticated implementations. Not all of the remaining methods
associated with Java's NIO will be covered in this section, but the reader should find
that those that are covered are the only additional ones that are needed for many
NIO applications. They are certainly the only methods not already covered that will
be needed for implementation of the chat server in Exercise 3.6 at the end of this
chapter. In fact, of the six new methods mentioned below, only four are NIO
methods. The other two are methods of the String class. In all the examples within
this section, buffer is assumed to be a pre-declared ByteBuffer.
 Though methods read and write are the usual methods for transferring data to and
from buffers, there are occasions when it is necessary to implement I/O at the byte
level. This is particularly so when the programmer wishes to place particular values
into a buffer or to remove all or part of the data from the buffer in order to carry out
further processing on that data (possibly prior to re-writing the processed data back
to the buffer). The methods to read and write a single byte from/to a buffer are get
and put respectively.

Examples

• byte oneByte = buffer.get();
• buffer.put(anotherByte);

 As was stated in the previous sub-section, each ByteBuffer has at its heart an array
for storing the data that is to be read from or written to a particular channel.
Sometimes, it is desirable to access the contents of this array directly. Method array
of class ByteBuffer allows us to do just this by returning the array of bytes holding
the data. For example:

 byte[] bufferArray = buffer.array();

If the data that is being transferred is of type String, then we may wish to convert
this array of bytes into a String. This may be achieved by using an overloaded form

Multithreading and Multiplexing 87

of the String constructor that has this form:

String(<byteArray>, <offset>, <numBytes>)

In the above signature, 'offset' is an integer specifying the byte number at which to
start in the array of bytes, while 'numBytes' specifies the number of bytes from the
array that are to be used (counting from position 'offset'). Obviously, we need to
know how many bytes of data there are in the array. The reader's first inclination
may be to assume that this can be derived from the array's length property.
However, this will not work, since it will simply show the size that was allocated to
the ByteBuffer by the programmer, not the number of bytes that have been used. In
order to determine how many data bytes have been written to the buffer, one must
use the ByteBuffer's position method following the latest writing to the buffer (i.e.,
before the buffer is 'flipped' for reading).

Example

int numBytes = buffer.position();
byte[] bufferArray = buffer.array();
String dataString =
 new String(bufferArray, 0, numBytes);

The above example copies the entire contents of the buffer's array and converts that
copy into a String. Another method of the String class that can be very useful when
processing data within a ByteBuffer does the opposite of the above. Method getBytes
converts a specified String into an array of bytes, which may then be written to the
buffer.

Example

String myStringData = "Just an example";
byte[] byteData = myStringData.getBytes();
buffer.put(byteData);

88 An Introduction to Network Programming with Java

Exercises

3.1 Take a copy of example ThreadHelloCount (Section 3.3.1). Examine the code
and then compile and run the program, observing the results.

3.2 Modify the above code to use the alternative method for multithreading (i.e.,
implementing the Runnable interface). Name your main class
RunnableHelloBye and your subsidiary classes Hello and Goodbye
respectively. The first should display the message 'Hello!' ten times (with a
random delay of 0-2 seconds between consecutive displays), while the second
should do the same with the message 'Goodbye!'.

 Note that it will NOT be the main class that implements the Runnable
interface, but each of the two subsidiary classes.

3.3 Take a copy of ResourceServer (Section 3.5), examine the code and run the
program.

3.4 Take a copy of MultiEchoClient (Section 3.3), re-naming it ConsumerClient.
Using this file as a template, modify the code so that the program acts as a
client of ResourceServer, as shown in the screenshots at the end of Section
3.5. (Ensure that the user can pass only 0 or 1 to the server.) Test the
operation of the server with two clients.

Note that exercises 3.5 and 3.6 (especially the latter) are rather substantial tasks.

3.5 Implement a basic electronic chatroom application that employs a
multithreaded server. Both server and client will need to be implemented and
brief details of these programs are provided below.

 The multithreaded chat server must broadcast each message it receives to
all the connected clients, of course. It should also maintain a dynamic list of
Socket references associated with those clients. Though you could use an
array to hold the list (with an appropriate over-allocation of array cells, to
cater for a potentially large number of connections), the use of a Vector
object would be much more realistic. (If you are unfamiliar with Vectors,
then refer to Section 4.8 in the next chapter.)

 The client must be implemented as a GUI that can send and receive
messages until it sends the string 'Bye'. A separate thread will be required to
receive messages from the server and add them cumulatively to a text area.
The first two things that this thread should do are (i) accept the user's
chatroom nickname (probably via an input dialogue box) and (ii) send this
name to the server. All other messages should be sent via a text area and
associated button. As a simplification, assume that no two clients will select
the same nickname.

 Note
 It is likely that a NoSuchElementException will be generated at the line that

reads from the socket's input stream when the user's socket is closed (after

Multithreading and Multiplexing 89

sending 'Bye'), so place this reading line inside a try and have an empty
catch.

3.6 Implement the same electronic chatroom application that you did for exercise
3.5 above, but this time using Java's non-blocking I/O on the server. You may
very well be able to make use of your original client program, but have the
client close its socket only after it has received (and displayed) its own 'Bye'
message sent back from the server. You can also now get rid of the code
dealing with any NoSuchElementException.

 At the server end, you will probably find it useful to maintain two Vectors,
the first of these holding references to all SocketChannels of newly-connected
clients for which no data has been processed and the second holding
references to instances/objects of class ChatUser. Each instance of this class
should hold references to the SocketChannel and chatname (a String)
associated with an individual chatroom user, with appropriate 'get' methods to
retrieve these references. As the first message from a given user (the one
holding the user's chatroom nickname) is processed, the user's SocketChannel
reference should be removed from the first Vector and a ChatUser instance
created and added to the second Vector.

 It will probably be desirable to have separate methods to deal with the
following:

(i) a user's entry into the chatroom;
(ii) a normal message;
(iii) a user's exit from the chatroom (after sending 'Bye').

Signatures for the first and last of these are shown below.

public static void announceNewUser(
 SocketChannel userSocketChannel,
 ByteBuffer buffer)

public static void announceExit(String name)

The method for processing an ordinary message has been done for you and is
shown below.

public static void broadcastMessage(String chatName,
 ByteBuffer buffer)
{
 String messagePrefix = chatName + ": ";
 byte[] messagePrefixBytes = messagePrefix.getBytes();
 final byte[] CR = "\n".getBytes();//Carriage return.

 try
 {
 int messageSize = buffer.position();

90 An Introduction to Network Programming with Java

 byte[] messageBytes = buffer.array();
 byte[] messageBytesCopy = new byte[messageSize];

 for (int i=0; i<messageSize; i++)
 {
 messageBytesCopy[i] = messageBytes[i];
 }

 buffer.clear();

 //Concatenate message text onto message prefix...
 buffer.put(messagePrefixBytes);
 for (int i=0; i<messageSize; i++)
 {
 buffer.put(messageBytesCopy[i]);
 }
 buffer.put(CR);

 SocketChannel chatSocketChannel;

 for (ChatUser chatUser:allUsers)
 {
 chatSocketChannel =
 chatUser.getSocketChannel();
 buffer.flip();

 //Write full message (with user's name)...
 chatSocketChannel.write(buffer);
 }
 }
 catch (IOException ioEx)
 {
 ioEx.printStackTrace();
 }
}

4 File Handling

Learning Objectives
After reading this chapter, you should:

• know how to create and process serial files in Java;
• know how to create and process random access files in Java;
• know how to redirect console input and output to disc files;
• know how to construct GUI-based file-handling programs;
• know how to use command line parameters with Java programs;
• understand the concept and importance of Java's serialisation

mechanism and know how to implement it;
• know how to make use of Vectors for convenient packaging of

serialised objects.

With all our programs so far, there has been a very fundamental limitation: all data
accepted is held only for as long as the program remains active. As soon as the
program finishes execution, any data that has been entered and the results of
processing such data are thrown away. Of course, for very many real-life
applications (banking, stock control, financial accounting, etc.), this limitation is
simply not realistic. These applications demand persistent data storage. That is to
say, data must be maintained in a permanent state, such that it is available for
subsequent further processing. The most common way of providing such persistent
storage is to use disc files. Java provides such a facility, with the access to such files
being either serial or random. The following sections explain the use of these two
file access methods, firstly for non-GUI applications and later for GUI applications.
In addition, the important and often neglected topic of serialisation is covered.

4.1 Serial Access Files

Serial access files are files in which data is stored in physically adjacent locations,
often in no particular logical order, with each new item of data being added to the
end of the file.
[Note that serial files are often mis-named sequential files, even by some authors
who should know better. A sequential file is a serial file in which the data are stored
in some particular order (e.g., in account number order). A sequential file is a serial
file, but a serial file is not necessarily a sequential file.]
 Serial files have a number of distinct disadvantages (as will be pointed out in 4.2),
as a consequence of which they are often used only to hold relatively small amounts
of data or for temporary storage, prior to processing, but such files are simpler to
handle and are in quite common usage.
 The internal structure of a serial file can be either binary (i.e., a compact format
determined by the architecture of the particular computers on which the file is to be

92 An Introduction to Network Programming with Java

used) or text (human-readable format, almost invariably using ASCII). The former
stores data more efficiently, but the latter is much more convenient for human
beings. Coverage here will be devoted exclusively to text files.
 Before J2SE 5.0, a text file required a FileReader object for input and a FileWriter
object for output. As of 5.0, we can often use just a File object for either input or
output (though not for both at the same time). The File constructor takes a String
argument that specifies the name of the file as it appears in a directory listing.

Examples

 (i) File inputFile = new File("accounts.txt");

(ii) String fileName = "dataFile.txt";

 File outputFile = new File(fileName);

N.B. If a string literal is used (e.g., "results.txt"), the full pathname may be
included, but double backslashes are then required in place of single backslashes
(since a single backslash would indicate an escape sequence representing one of the
invisible characters, such as tab). For example:

 File resultsFile = new File("c:\\data\\results.txt");

 Incidentally, we can (of course) call our files anything we like, but we should
follow good programming practice and give them meaningful names. In particular, it
is common practice to denote text data files by a suffix of .txt (for 'text').
 Class File is contained within package java.io, so this package should be
imported into any file-handling program. Before J2SE 5.0, it was necessary to wrap
a BufferedReader object around a FileReader object in order to read from a file.
Likewise, it was necessary to wrap a PrintWriter object around a FileWriter object
in order to write to the file. Now we can wrap a Scanner object around a File object
for input and a PrintWriter object around a File object for output. (The PrintWriter
class is also within package java.io.)

Examples

(i) Scanner input =
 new Scanner(new File("inFile.txt"));
(ii) PrintWriter output =
 new PrintWriter(new File("outFile.txt"));

We can then make use of methods next, nextLine, nextInt, nextFloat, ... for input and
methods print and println for output.

Examples (using objects input and output, as declared above)

(i) String item = input.next();
(ii) output.println("Test output");
(iii) int number = input.nextInt();

File Handling 93

Note that we need to know the type of the data that is in the file before we attempt to
read it! Another point worth noting is that we may choose to create anonymous File
objects, as in the examples above, or we may choose to create named File objects.

Examples

(i) File inFile = new File("inFile.txt");
 Scanner input = new Scanner(inFile);

(ii) File outFile = new File("outFile.txt");
 PrintWriter output = new PrintWriter(outFile);

Creating a named File object is slightly longer than using an anonymous File object,
but it allows us to make use of the File class's methods to perform certain checks on
the file. For example, we can test whether an input file actually exists. Programs that
depend upon the existence of such a file in order to carry out their processing must
use named File objects. (More about the File class's methods shortly.)
 When the processing of a file has been completed, the file should be closed via
the close method, which is a member of both the Scanner class and the PrintWriter
class. For example:

input.close();

This is particularly important for output files, in order to ensure that the file buffer
has been emptied and all data written to the file. Since file output is buffered, it is
not until the output buffer is full that data will normally be written to disc. If a
program crash occurs, then any data still in the buffer will not have been written to
disc. Consequently, it is good practice to close a file explicitly if you have finished
writing to it (or if your program does not need to write to the file for anything more
than a very short amount of time). Closing the file causes the output buffer to be
flushed and any data in the buffer to be written to disc. No such precaution is
relevant for a file used for input purposes only, of course.
 Note that we cannot move from reading mode to writing mode or vice versa
without first closing our Scanner object or PrintWriter object and then opening a
PrintWriter object or Scanner object respectively and associating it with the file.

Now for a simple example program to illustrate file output...

Example

Writes a single line of output to a text file.

import java.io.*;

public class FileTest1
{
 public static void main(String[] args)
 throws IOException

94 An Introduction to Network Programming with Java

 {
 PrintWriter output =
 new PrintWriter(new File("test1.txt"));
 output.println("Single line of text!");
 output.close();
 }
}

Note that there is no 'append' method for a serial file in Java. After execution of the
above program, the file 'test1.txt' will contain only the specified line of text. If the
file already existed, its initial contents will have been overwritten. This may or may
not have been your intention, so take care! If you need to add data to the contents of
an existing file, you still (as before J2SE 5.0) need to use a FileWriter object,
employing either of the following constructors with a second argument of true:

• FileWriter(String <fileName>, boolean <append>)

• FileWriter(File <fileName>, boolean <append>)

For example:

 FileWriter addFile = new FileWriter("data.txt", true);

In order to send output to the file, a PrintWriter would then be wrapped around the
FileWriter:

 PrintWriter output = new PrintWriter(addFile);

These two steps may, of course, be combined into one:

 PrintWriter output =
 new PrintWriter(
 new FileWriter("data.txt", true);

 It would be a relatively simple matter to write Java code to read the data back from
a text file to which it has been written, but a quick and easy way of checking that the
data has been written successfully is to use the relevant operating system command.
For example, on a PC, open up an MS-DOS command window and use the MS-
DOS type command, as below.

type test1.dat

 Often, we will wish to accept data from the user during the running of a program.
In addition, we may also wish to allow the user to enter a name for the file. The next
example illustrates both of these features. Since there may be a significant delay
between consecutive file output operations while awaiting input from the user, it is
good programming practice to use File method flush to empty the file output buffer.
(Remember that, if the program crashes and there is still data in the file output
buffer, that data will be lost!)

File Handling 95

Example

import java.io.*;
import java.util.*;

public class FileTest2
{
 public static void main(String[] args)
 throws IOException
 {
 String fileName;
 int mark;
 Scanner input= new Scanner(System.in);

 System.out.print("Enter file name: ");
 fileName = input.nextLine();
 PrintWriter output =
 new PrintWriter(new File(fileName));
 System.out.println("Ten marks needed.\n");
 for (int i=1; i<11; i++)
 {
 System.out.print("Enter mark " + i + ": ");
 mark = input.nextInt();
 //* Should really validate entry! *
 output.println(mark);
 output.flush();
 }
 output.close();
 }
}

Example output from this program is shown in Figure 4.1.

 When reading data from any text file, we should not depend upon being able to
read a specific number of values, so we should read until the end of the file is
reached. Programming languages differ fundamentally in how they detect an end-of-
file situation. With some, a program crash will result if an attempt is made to read
beyond the end of a file; with others, you must attempt to read beyond the end of the
file in order for end-of-file to be detected. Before J2SE 5.0, Java fell into the latter
category and it was necessary to keep reading until the string read (and only strings
were read then) had a null reference. As of 5.0, we must not attempt to read
beyond the end-of-file if we wish to avoid the generation of a
NoSuchElementException. Instead, we have to check ahead to see whether there is
more data to be read. This is done by making use of the Scanner class's hasNext
method, which returns a Boolean result indicating whether or not there is any more
data.

96 An Introduction to Network Programming with Java

 Figure 4.1 Accepting serial file input from the user.

Example

import java.io.*;
import java.util.*;

public class FileTest3
{
 public static void main(String[] args)
 throws IOException
 {
 int mark, total=0, count=0;
 Scanner input =
 new Scanner(new File("marks.txt"));

 while (input.hasNext())
 {
 mark = input.nextInt();
 total += mark;
 count++;
 }
 input.close();
 System.out.println("Mean = "
 + (float)total/count);
 }
}

File Handling 97

Note that there is no structure imposed upon a file by Java. It is the programmer's
responsibility to impose any required logical structuring upon the file. 'Records' on
the file are not physical units determined by Java or the operating system, but logical
units set up and maintained by the programmer. For example, if a file is to hold
details of customer accounts, each logical record may comprise the following:

• account number;
• customer name;
• account balance.

It is the programmer's responsibility to ensure that each logical record on the file
holds exactly these three fields and that they occur in the order specified.

4.2 File Methods

Class File has a large number of methods, the most important of which are shown
below.

• boolean canRead()
Returns true if file is readable and false otherwise.

• boolean canWrite()
Returns true if file is writeable and false otherwise.

• boolean delete()
Deletes file and returns true/false for success/failure.

• boolean exists()

Returns true if file exists and false otherwise.

• String getName()
Returns name of file.

• boolean isDirectory()
Returns true if object is a directory/folder and false otherwise.
(Note that File objects can refer to ordinary files or to directories.)

• boolean isFile()
Returns true if object is a file and false otherwise.

• long length()
Returns length of file in bytes.

98 An Introduction to Network Programming with Java

• String[] list()
If object is a directory, array holding names of files within directory is
returned.

• File[] listFiles()
Similar to previous method, but returns array of File objects.

• boolean mkdir()
Creates directory with name of current File object.
Return value indicates success/failure.

The following example illustrates the use of some of these methods.

Example

import java.io.*;
import java.util.*;

public class FileMethods
{
 public static void main(String[] args)
 throws IOException
 {
 String filename;
 Scanner input = new Scanner(System.in);

 System.out.print(
 "Enter name of file/directory ");
 System.out.print("or press <Enter> to quit: ");
 filename = input.nextLine();

 while (!filename.equals("")) //Not <Enter> key.
 {
 File fileDir = new File(filename);

 if (!fileDir.exists())
 {
 System.out.println(filename
 + " does not exist!");
 break; //Get out of loop.
 }

 System.out.print(filename + " is a ");
 if (fileDir.isFile())
 System.out.println("file.");
 else
 System.out.println("directory.");

File Handling 99

 System.out.print("It is ");
 if (!fileDir.canRead())
 System.out.print("not ");
 System.out.println("readable.");

 System.out.print("It is ");
 if (!fileDir.canWrite())
 System.out.print("not ");
 System.out.println("writeable.");

 if (fileDir.isDirectory())
 {
 System.out.println("Contents:");
 String[] fileList = fileDir.list();
 //Now display list of files in
 //directory...
 for (int i=0;i<fileList.length;i++)
 System.out.println(" "
 + fileList[i]);
 }
 else
 {
 System.out.print("Size of file: ");
 System.out.println(fileDir.length()
 + " bytes.");
 }

 System.out.print(
 "\n\nEnter name of next file/directory ");
 System.out.print(
 "or press <Enter> to quit: ");
 filename = input.nextLine();
 }
 input.close();
 }
}

Figure 4.2 shows example output from the above program.

4.3 Redirection

By default, the standard input stream System.in is associated with the keyboard,
while the standard output stream System.out is associated with the VDU. If,
however, we wish input to come from some other source (such as a text file) or we
wish output to go to somewhere other than the VDU screen, then we can redirect
the input/output. This can be extremely useful when debugging a program that

100 An Introduction to Network Programming with Java

requires anything more than a couple of items of data from the user. Instead of re-
entering the data each time we run the program, we simply create a text file holding
our items of data on separate lines (using a text editor or wordprocessor) and then re-
direct input to come from our text file. This can save a great deal of time-
consuming, tedious and error-prone re-entry of data when debugging a program.

 Figure 4.2 Outputting file properties.

 We use '<' to specify the new source of input and '>' to specify the new output
destination.

Examples

 java ReadData < payroll.txt
 java WriteData > results.txt

When the first of these lines is executed, program 'ReadData(.class)' begins
execution as normal. However, whenever it encounters a file input statement (via
Scanner method next, nextLine, nextInt, etc.), it will now take as its input the next
available item of data in file 'payroll.txt'. Similarly, program 'WriteData(.class)' will
direct the output of any print and println statements to file 'results.txt'.
 We can use redirection of both input and output with the same program, as the
example below shows. For example:

 java ProcessData < readings.txt > results.txt

For program 'ProcessData(.class)' above, all file input statements will read from file
'readings.txt', while all prints and printlns will send output to file 'results.txt'.

File Handling 101

4.4 Command Line Parameters

When entering the java command into a command window, it is possible to supply
values in addition to the name of the program to be executed. These values are
called command line parameters and are values that the program may make use of.
Such values are received by method main as an array of Strings. If this argument is
called arg [Singular used here, since individual elements of the array will now be
referenced], then the elements may be referred to as arg[0], arg[1], arg[2], etc.

Example

Suppose a compiled Java program called Copy.class copies the contents of one file
into another. Rather than prompting the user to enter the names of the files (which
would be perfectly feasible, of course), the program may allow the user to specify
the names of the two files as command line parameters:

java Copy source.dat dest.dat

(Please ignore the fact that MS-DOS has a perfectly good copy command that could
do the job without the need for our Java program!)

Method main would then access the file names through arg[0] and arg[1]:

import java.io.*;
import java.util.*;

public class Copy
{
 public static void main(String[] arg)
 throws IOException
 {
 //First check that 2 file names have been
 //supplied...
 if (arg.length < 2)
 {
 System.out.println(
 "You must supply TWO file names.");
 System.out.println("Syntax:");
 System.out.println(
 " java Copy <source> <destination>");
 return;
 }

 Scanner source = new Scanner(new File(arg[0]));
 PrintWriter destination =
 new PrintWriter(new File(arg[1]));

 String input;

102 An Introduction to Network Programming with Java

 while (source.hasNext())
 {
 input = source.nextLine();
 destination.println(input);
 }

 source.close();
 destination.close();
 }
}

4.5 Random Access Files

Serial access files are simple to handle and are quite widely used in small-scale
applications or as a means of providing temporary storage in larger-scale
applications. However, they do have two distinct disadvantages, as noted below.

(i) We can't go directly to a specific record. In order to access a particular record,
it is necessary to physically read past all the preceding records. For applications
containing thousands of records, this is simply not feasible.
(ii) It is not possible to add or modify records within an existing file. (The whole
file would have to be re-created!)

 Random access files (probably more meaningfully called direct access files)
overcome both of these problems, but do have some disadvantages of their own...

(i) In common usage, all the (logical) records in a particular file must be of the
same length.

(ii) Again in common usage, a given string field must be of the same length for all
records on the file.

(iii) Numeric data is not in human-readable form.

 However, the speed and flexibility of random access files often greatly outweigh
the above disadvantages. Indeed, for many real-life applications, there is no realistic
alternative to some form of direct access.

To create a random access file in Java, we create a RandomAccessFile object. The
constructor takes two arguments:

• a string or File object identifying the file;
• a string specifying the file's access mode.

The latter of these may be either "r" (for read-only access) or "rw" (for read-and-
write access). For example:

 RandomAccessFile ranFile =
 new RandomAccessFile("accounts.dat","rw");

File Handling 103

 Before reading or writing a record, it is necessary to position the file pointer. We
do this by calling method seek, which requires a single argument specifying the byte
position within the file. Note that the first byte in a file is byte 0. For example:

 ranFile.seek(500);
 //Move to byte 500 (the 501st byte).

In order to move to the correct position for a particular record, we need to know two
things:

• the size of records on the file;
• the algorithm for calculating the appropriate position.

The second of these two factors will usually involve some kind of hashing function
that is applied to the key field. We shall avoid this complexity and assume that
records have keys 1, 2, 3,... and that they are stored sequentially. However, we still
need to calculate the record size. Obviously, we can decide upon the size of each
String field ourselves. For numeric fields, though, the byte allocations are fixed by
Java (in a platform-independent fashion) and are as shown below.

int 4 bytes
long 8 bytes
float 4 bytes
double 8 bytes

Class RandomAccessFile provides the following methods for manipulating the
above types:

 readInt, readLong, readFloat, readDouble
 writeInt, writeLong, writeFloat, writeDouble

It also provides similarly-named methods for manipulating the other primitive types.
In addition, it provides a method called writeChars for writing a (variable-length)
string. Unfortunately, no methods for reading/writing a string of fixed size are
provided, so we need to write our own code for this. In doing so, we shall need to
make use of methods readChar and writeChar for reading/writing the primitive type
char.

Example

Suppose we wish to set up an accounts file with the following fields:

• account number (long);
• surname (String);
• initials (String);
• balance (float).

104 An Introduction to Network Programming with Java

N.B. When calculating the number of bytes for a String field, do not make the
mistake of allocating only one byte per character. Remember that Java is based on
the unicode character set, in which each character occupies two bytes.

Now let's suppose that we decide to allocate 15 (unicode) characters to surnames
and 3 (unicode) characters to initials. This means that each surname will be allocated
30 (i.e., 15 x 2) bytes and each set of initials will be allocated 6 (i.e., 3 x 2) bytes.
Since we know that a long occupies precisely 8 bytes and a float occupies precisely
4 bytes, we now know that record size = (8+30+6+4) bytes = 48 bytes.
Consequently, we shall store records starting at byte positions 0, 48, 96, etc. The
formula for calculating the position of any record on the file is then:

 (Record No. –1) x 48

For example, suppose our RandomAccessFile object for the above accounts file is
called ranAccts. Then the code to locate the record with account number 5 is:

 ranAccts.seek(192); //(5–1)x48 = 192

 Since method length returns the number of bytes in a file, we can always work out
the number of records in a random access file by dividing the size of the file by the
size of an individual record. Consequently, the number of records in file ranAccts at
any given time = ranAccts.length()/48.

Now for the code...

import java.io.*;
import java.util.*;

public class RanFile1
{
 private static final int REC_SIZE = 48;
 private static final int SURNAME_SIZE = 15;
 private static final int NUM_INITS = 3;
 private static long acctNum = 0;
 private static String surname, initials;
 private static float balance;

 public static void main(String[] args)
 throws IOException
 {
 RandomAccessFile ranAccts =
 new RandomAccessFile("accounts.dat", "rw");

 Scanner input = new Scanner(System.in);

 String reply = "y";

File Handling 105

 do
 {
 acctNum++;
 System.out.println(
 "\nAccount number " + acctNum + ".\n");
 System.out.print("Surname: ");
 surname = input.nextLine();
 System.out.print("Initial(s): ");
 initials = input.nextLine();
 System.out.print("Balance: ");
 balance = input.nextFloat();

 //Now get rid of carriage return(!)...
 input.nextLine();

 writeRecord(ranAccts); //Method defined below.

 System.out.print(
 "\nDo you wish to do this again (y/n)? ");
 reply = input.nextLine();
 }while (reply.equals("y")||reply.equals("Y"));

 System.out.println();
 showRecords(ranAccts); //Method defined below.
 }

 public static void writeRecord(RandomAccessFile file)
 throws IOException
 {
 //First find starting byte for current record...
 long filePos = (acctNum-1) * REC_SIZE;

 //Position file pointer...
 file.seek(filePos);

 //Now write the four (fixed-size) fields.
 //Note that a definition must be provided
 //for method writeString...
 file.writeLong(acctNum);
 writeString(file, surname, SURNAME_SIZE);
 writeString(file, initials, NUM_INITS);
 file.writeFloat(balance);
 }

 public static void writeString(RandomAccessFile file,
 String text, int fixedSize) throws IOException
 {
 int size = text.length();

106 An Introduction to Network Programming with Java

 if (size<=fixedSize)
 {
 file.writeChars(text);

 //Now 'pad out' the field with spaces...
 for (int i=size; i<fixedSize; i++)
 file.writeChar(' ');
 }
 else //String is too long!
 file.writeChars(text.substring(0,fixedSize));
 //Write to file the first fixedSize characters of
 //string text, starting at byte zero.
 }

 public static void showRecords(RandomAccessFile file)
 throws IOException
 {
 long numRecords = file.length()/REC_SIZE;

 file.seek(0); //Go to start of file.
 for (int i=0; i<numRecords; i++)
 {
 acctNum = file.readLong();
 surname = readString(file, SURNAME_SIZE);
 //readString defined below.
 initials = readString(file, NUM_INITS);
 balance = file.readFloat();

 System.out.printf("" + acctNum
 + " " + surname
 + " " + initials + " "
 + "%.2f %n",balance);
 }
 }

 public static String readString(
 RandomAccessFile file, int fixedSize)
 throws IOException
 {
 String value = ""; //Set up empty string.
 for (int i=0; i<fixedSize; i++)
 //Read character and concatenate it onto value...
 value+=file.readChar();

 return value;
 }
}

File Handling 107

Note that methods readString and writeString above may be used without
modification in any Java program that needs to transfer strings from/to a random
access file.

The following screenshot demonstrates the operation of this program.

 Figure 4.3 Creating a simple random access file and displaying its contents.

 The above example does not adequately demonstrate the direct access capabilities
of a RandomAccessFile object, since we have processed the whole of the file from
start to finish, dealing with records in the order in which they are stored on the file.
We should also be able to retrieve individual records from anywhere in the file
and/or make modifications to those records. The next example shows how this can
be done for our accounts file.

Example

//Allows the user to retrieve individual account
//records and modify their balances.

import java.io.*;
import java.util.*;

public class RanFile2
{
 private static final int REC_SIZE=48;
 private static final int SURNAME_SIZE=15;
 private static final int NUM_INITS=3;

108 An Introduction to Network Programming with Java

 private static long acctNum=0;
 private static String surname, initials;
 private static float balance;

 public static void main(String[] args)
 throws IOException
 {
 Scanner input = new Scanner(System.in);
 RandomAccessFile ranAccts =
 new RandomAccessFile("accounts.dat", "rw");
 long numRecords = ranAccts.length()/REC_SIZE;
 String reply;
 long currentPos; //File pointer position.

 do
 {
 System.out.print("\nEnter account number: ");
 acctNum = input.nextLong();
 while ((acctNum<1) || (acctNum>numRecords))
 {
 System.out.println(
 "\n*** Invalid number! ***\n");
 System.out.print(
 "\nEnter account number: ");
 acctNum = input.nextLong();
 }
 showRecord(ranAccts); //Defined below.
 System.out.print("\nEnter new balance: ");
 balance = input.nextFloat();

 input.nextLine();
 //Get rid of carriage return!

 currentPos = ranAccts.getFilePointer();
 ranAccts.seek(currentPos-4); //Back 4 bytes.
 ranAccts.writeFloat(balance);
 System.out.print(
 "\nModify another balance (y/n)? ");
 reply = (input.nextLine()).toLowerCase();
 }while (reply.equals("y"));
 //(Alternative to method in previous example.)

 ranAccts.close();
 }

 public static void showRecord(RandomAccessFile file)
 throws IOException
 {

File Handling 109

 file.seek((acctNum-1)*REC_SIZE);
 acctNum = file.readLong();
 surname = readString(file, SURNAME_SIZE);
 initials = readString(file, NUM_INITS);
 balance = file.readFloat();

 System.out.println("Surname: " + surname);
 System.out.println("Initials: " + initials);
 System.out.printf("Balance: %.2f %n",balance);
 }

 public static String readString(
 RandomAccessFile file, int fixedSize)
 throws IOException
 {
 //Set up empty buffer before reading from file...
 StringBuffer buffer = new StringBuffer();

 for (int i=0; i<fixedSize; i++)
 //Read character from file and append to buffer.
 buffer.append(file.readChar());
 return buffer.toString(); //Convert into String.
 }
}

4.6 Serialisation [U.S. spelling Serialization]

As seen in the preceding sections, transferring data of the primitive types to and
from disc files is reasonably straightforward. Transferring string data presents a little
more of a challenge, but even this is not a particularly onerous task. However, how
do we go about transferring objects of classes? (String is a class, of course, but it is
treated rather differently from other classes.) One way of saving an object to a file
would be to decompose the object into its constituent fields (strings and numbers)
and write those individual data members to the file. Then, when reading the values
back from the file, we could re-create the original objects by supplying those values
to the appropriate constructors. However, this is a rather tedious and long-winded
method. In addition, since the data members of an object may themselves include
other objects (some of whose data members may include further objects, some of
whose members...), this method would not be generally applicable.
 Unlike other common O-O languages, Java provides an inbuilt solution:
serialisation. Objects of any class that implements the Serializable interface may be
transferred to and from disc files as whole objects, with no need for decomposition
of those objects. The Serializable interface is, in fact, nothing more than a marker to
tell Java that objects of this class may be transferred on an object stream to and from
files. Implementation of the Serializable interface need involve no implementation
of methods. The programmer merely has to ensure that the class to be used includes
the declaration ‘implements Serializable’ in its header line.

110 An Introduction to Network Programming with Java

 Class ObjectOutputStream is used to save entire objects directly to disc, while
class ObjectInputStream is used to read them back from disc. For output, we wrap
an object of class ObjectOutputStream around an object of class FileOutputStream,
which itself is wrapped around a File object or file name. Similarly, input requires
us to wrap an ObjectInputStream object around a FileInputStream object, which in
turn is wrapped around a File object or file name.

Examples

(i) ObjectOutputStream outStream =
 new ObjectOutputStream(
 new FileOutputStream("personnel.dat"));
(ii) ObjectInputStream inStream =
 new ObjectInputStream(
 new FileInputStream("personnel.dat"));

 Methods writeObject and readObject are then used for the actual output and input
respectively. Since these methods write/read objects of class Object (the ultimate
superclass), any objects read back from file must be typecast into their original class
before we try to use them. For example:

 Personnel person = (Personnel)inStream.readObject();
 //(Assuming that inStream is as declared above.)

 In addition to the possibility of an IOException being generated during I/O, there
is also the possibility of a ClassNotFoundException being generated, so we must
either handle this exception ourselves or throw it. A further consideration that needs
to be made is how we detect end-of-file, since there is no equivalent of the Scanner
class's hasNext method for use with object streams. We could simply use a for
loop to read back the number of objects we believe that the file holds, but this would
be very bad practice in general (especially as we may often not know how many
objects a particular file holds).
 The only viable option there appears to be is to catch the EOFException that is
generated when we read past the end of the file. This author feels rather uneasy
about having to use this technique, since it conflicts with the fundamental ethos of
exception handling. Exception handling (as the term implies) is designed to cater for
exceptional and erroneous situations that we do not expect to happen if all goes well
and processing proceeds as planned. Here, however, we are going to be using
exception handling to detect something that we not only know will happen
eventually, but also are dependent upon happening if processing is to reach a
successful conclusion. Unfortunately, there does not appear to be any alternative to
this technique.

Example

This example creates three objects of a class called Personnel and writes them to
disc file (as objects). It then reads the three objects back from file (employing a
typecast to convert them into their original type) and makes use of the ‘get’ methods

File Handling 111

of class Personnel to display the data members of the three objects. We must, of
course, ensure that class Personnel implements the Serializable interface (which
involves nothing more than including the phrase implements Serializable). In a real-
life application, class Personnel would be defined in a separate file, but it has been
included in the main application file below simply for convenience.

import java.io.*;

public class Serialise
{
 public static void main(String[] args)
 throws IOException, ClassNotFoundException
 {
 ObjectOutputStream outStream =
 new ObjectOutputStream(
 new FileOutputStream("personnel.dat"));

 Personnel[] staff =
 {new Personnel(123456,"Smith", "John"),
 new Personnel(234567,"Jones", "Sally Ann"),
 new Personnel(999999,"Black", "James Paul")};

 for (int i=0; i<staff.length; i++)
 outStream.writeObject(staff[i]);
 outStream.close();

 ObjectInputStream inStream =
 new ObjectInputStream(
 new FileInputStream("personnel.dat"));

 int staffCount = 0;

 try
 {
 do
 {
 Personnel person =
 (Personnel)inStream.readObject();
 staffCount++;

 System.out.println(
 "\nStaff member " + staffCount);
 System.out.println("Payroll number: "
 + person.getPayNum());
 System.out.println("Surname: "
 + person.getSurname());
 System.out.println("First names: "
 + person.getFirstNames());

112 An Introduction to Network Programming with Java

 }while (true);
 }
 catch (EOFException eofEx)
 {
 System.out.println(
 "\n\n*** End of file ***\n");
 inStream.close();
 }
 }
}

class Personnel implements Serializable
//No action required by Serializable interface.
{
 private long payrollNum;
 private String surname;
 private String firstNames;

 public Personnel(long payNum,String sName,
 String fNames)
 {
 payrollNum = payNum;
 surname = sName;
 firstNames = fNames;
 }

 public long getPayNum()
 {
 return payrollNum;
 }

 public String getSurname()
 {
 return surname;
 }

 public String getFirstNames()
 {
 return firstNames;
 }

 public void setSurname(String sName)
 {
 surname = sName;
 }
}

Output from the above program is shown in Figure 4.4.

File Handling 113

 Figure 4.4 Displaying the contents of a small file of serialised objects.

4.7 File I/O with GUIs

Since the majority of applications nowadays have GUI interfaces, it would be nice to
provide such an interface for our file handling programs. The reader will almost
certainly have used file handling applications that provide such an interface. A
particularly common feature of such applications is the provision of a dialogue box
that allows the user to navigate the computer's file system and select either an
existing file for opening or the destination directory for a file that is to be created.
By employing Swing class JFileChooser, we can display a dialogue box that will
allow the user to do just that.

A JFileChooser object opens a modal dialogue box ['Modal' means that the
window must be dismissed before further processing may be carried out] that
displays the system's directory structure and allows the user to traverse it. Once a
JFileChooser object has been created, method setFileSelectionMode may be used to
specify whether files and/or directories are selectable by the user, via the following
constants:

 JFileChooser.FILES_ONLY
 JFileChooser.DIRECTORIES_ONLY
 JFileChooser.FILES_AND_DIRECTORIES

Example

 JFileChooser fileChooser = new JFileChooser();
 fileChooser.setFileSelectionMode(
 JFileChooser.FILES_ONLY);

114 An Introduction to Network Programming with Java

 We can then call either showOpenDialog or showSaveDialog. The former
displays a dialogue box with 'Open' and 'Cancel' buttons, while the latter displays a
dialogue box with 'Save' and 'Cancel' buttons. Each of these methods takes a single
argument and returns an integer result. The argument specifies the JFileChooser's
parent component, i.e. the window over which the dialogue box will be displayed.
For example:

 fileChooser.showOpenDialog(this);

The above will cause the dialogue box to be displayed in the centre of the
application window. If null is passed as an argument, then the dialogue box appears
in the centre of the screen.

The integer value returned may be compared with either of the following inbuilt
constants:

 JFileChooser.CANCEL_OPTION
 JFileChooser.APPROVE_OPTION

Testing against the latter of these constants will return 'true' if the user has selected a
file.

Example

 int selection = fileChooser.showOpenDialog(null);
 if (selection == JFileChooser.APPROVE_OPTION)
 ...
 //Specifies action taken if file chosen.)

If a file has been selected, then method getSelectedFile returns the corresponding
File object. For example:

 File file = fileChooser.getSelectedFile();

For serial I/O of strings and the primitive types, we would then wrap either a
Scanner object (for input) or a PrintWriter object (for output) around the File object,
as we did in 4.1.

Example

 Scanner fileIn = new Scanner(file);
 PrintWriter fileOut = new PrintWriter(file);

We can then make use of methods next, nextInt, etc. for input and methods print and
println for output.
 Similarly, for serial I/O of objects, we would wrap either an ObjectInputStream
object plus FileInputStream object or an ObjectOutputStream object plus
FileOutputStream object around the File object.

File Handling 115

Example

 ObjectInputStream fileIn =
 new ObjectInputStream(
 new FileInputStream(file));

 ObjectOutputStream fileOut =
 new ObjectOutputStream(
 new FileOutputStream(file));

We can then make use of methods readObject and writeObject, as before. Of course,
since we are now dealing with a GUI, we need to implement ActionListener, in order
to process our button selections.

Example

This example is a simple application for reading a file of examination marks and
displaying the results of individual students, one at a time. The file holding results
will be a simple serial file, with each student's data held as three fields in the
following sequence: surname, first name(s) and examination mark. We shall firstly
allow the user to navigate the computer's file system and select the desired file
(employing a JFileChooser object). Once a file has been selected, our program will
open the file, read the first (logical) record and display its contents within the text
fields of a panel we have set up. This panel will also contain two buttons, one to
allow the user to open another file and the other to allow the user to move on to the
next record in the file. In order to read an individual record, we shall define a
method called readRecord that reads in the surname, first name(s) and examination
mark for an individual student.

Before looking at the code, it is probably useful to look ahead and see what the
intended output should look like. In order that the JFileChooser object may be
viewed as well, the screenshot in Figure 4.5 shows the screen layout after one file
has been opened and then the 'Open File' button has been clicked on by the user.
 The code for this application is shown below. If the reader wishes to create a serial
file for testing this program, this may be done very easily by using any text editor to
enter the required three fields for each of a series of students (each field being
followed by a carriage return).

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.util.*;

public class UseFileChooser extends JFrame
 implements ActionListener
{
 private JPanel displayPanel, buttonPanel;

116 An Introduction to Network Programming with Java

 private JLabel surnameLabel, firstNamesLabel,
 markLabel;
 private JTextField surnameBox, firstNamesBox,
 markBox;
 private JButton openButton, nextButton;
 private Scanner input;

 public static void main(String[] args)
 {
 UseFileChooser frame = new UseFileChooser();
 frame.setSize(350,150);
 frame.setVisible(true);
 }

 Figure 4.5 A JFileChooser object being used to select a file.

 public UseFileChooser()
 {
 setTitle("FileChooser Demo");

 setLayout(new BorderLayout());

 displayPanel = new JPanel();
 displayPanel.setLayout(new GridLayout(3,2));

 surnameLabel = new JLabel("Surname");

File Handling 117

 firstNamesLabel = new JLabel("First names");
 markLabel = new JLabel("Mark");
 surnameBox= new JTextField();
 firstNamesBox = new JTextField();
 markBox = new JTextField();

 //For this application, user should not be able
 //to change any records...
 surnameBox.setEditable(false);
 firstNamesBox.setEditable(false);
 markBox.setEditable(false);

 displayPanel.add(surnameLabel);
 displayPanel.add(surnameBox);
 displayPanel.add(firstNamesLabel);
 displayPanel.add(firstNamesBox);
 displayPanel.add(markLabel);
 displayPanel.add(markBox);

 add(displayPanel, BorderLayout.NORTH);

 buttonPanel = new JPanel();
 buttonPanel.setLayout(new FlowLayout());

 openButton = new JButton("Open File");
 openButton.addActionListener(this);
 nextButton = new JButton("Next Record");
 nextButton.addActionListener(this);
 nextButton.setEnabled(false);
 //(No file open yet.)

 buttonPanel.add(openButton);
 buttonPanel.add(nextButton);

 add(buttonPanel, BorderLayout.SOUTH);

 addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(
 WindowEvent event)
 {
 if (input != null) //A file is open.
 input.close();
 System.exit(0);
 }
 }
);

118 An Introduction to Network Programming with Java

 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == openButton)
 {
 try
 {
 openFile();
 }
 catch(IOException ioEx)
 {
 JOptionPane.showMessageDialog(this,
 "Unable to open file!");
 }
 }
 else
 {
 try
 {
 readRecord();
 }
 catch(EOFException eofEx)
 {
 nextButton.setEnabled(false);
 //(No next record.)

 JOptionPane.showMessageDialog(this,
 "Incomplete record!\n"
 + "End of file reached.");
 }
 catch(IOException ioEx)
 {
 JOptionPane.showMessageDialog(this,
 "Unable to read file!");
 }
 }
 }

 public void openFile() throws IOException
 {
 if (input != null) //A file is already open, so
 //needs to be closed first.
 {
 input.close();
 input = null;
 }
 JFileChooser fileChooser = new JFileChooser();

File Handling 119

 fileChooser.setFileSelectionMode(
 JFileChooser.FILES_ONLY);

 int selection = fileChooser.showOpenDialog(null);
 //Window opened in centre of screen.

 if (selection == JFileChooser.CANCEL_OPTION)
 return;

 File results = fileChooser.getSelectedFile();
 if (results ==
 null||results.getName().equals(""))
 //No file name entered by user.
 {
 JOptionPane.showMessageDialog(this,
 "Invalid selection!");
 return;
 }
 input = new Scanner(results);
 readRecord(); //Read and display first record.
 nextButton.setEnabled(true); //(File now open.)
 }

 public void readRecord() throws IOException
 {
 String surname, firstNames, textMark;

 //Clear text fields...
 surnameBox.setText("");
 firstNamesBox.setText("");
 markBox.setText("");

 if (input.hasNext()) //Not at end of file.
 {
 surname = input.nextLine();
 surnameBox.setText(surname);
 }
 else
 {
 JOptionPane.showMessageDialog(this,
 "End of file reached.");
 nextButton.setEnabled(false);//No next record.
 return;
 }

 //Should cater for possibility of incomplete
 //records...

120 An Introduction to Network Programming with Java

 if (!input.hasNext())
 throw (new EOFException());

 //Otherwise...
 firstNames = input.nextLine();
 firstNamesBox.setText(firstNames);

 if (!input.hasNext())
 throw (new EOFException());

 //Otherwise...
 textMark = input.nextLine();
 markBox.setText(textMark);
 }
}

 Note that neither windowClosing nor actionPerformed can throw an exception,
since their signatures do not contain any throws clause and we cannot change those
signatures. Consequently, any exceptions that do arise must be handled explicitly
either by these methods themselves or by methods called by them (as with method
closeFile).

4.8 Vectors

An object of class Vector is like an array, but can dynamically increase or decrease
in size according to an application's changing storage requirements and can hold
only references to objects, not values of primitive types. As of J2SE 5.0, an
individual Vector can hold only references to instances of a single, specified class.
(This restriction can be circumvented by specifying the base type to be Object, the
ultimate superclass, if a heterogeneous collection of objects is really required.)
 Constructor overloading allows us to specify the initial size and, if we wish, the
amount by which a Vector's size will increase once it becomes full. However, the
simplest form of the constructor takes no arguments and assumes an initial capacity
of ten and a doubling of capacity whenever the Vector becomes full. The class of
elements that may be held in the Vector is specified in angle brackets after the word
Vector (both in the declaration of the Vector and in its creation). For example, the
following statement declares and creates a Vector that can hold Strings:

 Vector<String> stringVec = new Vector<String>();

Objects are added to a Vector via method add (or method addElement) and then
referenced/retrieved via method elementAt, which takes a single argument that
specifies the object's position within the Vector (numbering from zero, of course).
Whilst in the Vector, objects are stored as Object references (i.e., as references to
instances of class Object). Before J2SE 5.0, an element held in a Vector had to be
retrieved via an explicit typecast into its original class.

File Handling 121

Example (Assumes that the Vector currently holds 3 strings.)

stringVec.add("Example");
//Next step retrieves this element.
String word = (String)stringVec.elementAt(3);

The 'auto-unboxing' feature of J2SE 5.0 means that this explicit typecast is no longer
necessary. We can simply reference the required element by its position and Java
will carry out an implicit typecast into the appropriate type (the 'auto-unboxing') for
us.

Example

String word1 = "Example";
stringVec.add(word1);
String word2 = stringVec.elementAt(3);

After execution of the above lines, word1 and word2 will both reference the string
'Example'.
 Class Vector is contained within package java.util, so this package should be
imported by any program wishing to make use of Vectors.

Example

This example creates three objects of class Personnel and uses the add method of
class Vector to place the objects into a Vector. It then employs the Vector class's
elementAt method to reference the individual objects within the Vector and the 'get'
methods of class Personnel to retrieve the data properties of the three objects. Vector
method size is used to return the number of elements in the Vector.

import java.util.*;

public class VectorTest
{
 public static void main(String[] args)
 {
 Vector<Personnel> staffList =
 new Vector<Personnel>();

 Personnel[] staff =
 {new Personnel(123456,"Smith", "John"),
 new Personnel(234567,"Jones", "Sally Ann"),
 new Personnel(999999,"Black", "James Paul")};

 for (int i=0; i<staff.length; i++)
 staffList.add(staff[i]);//Insert into Vector.

122 An Introduction to Network Programming with Java

 for (Personnel person:staffList)
 {
 System.out.println("\nPayroll number: "
 + person.getPayNum());
 System.out.println("Surname: "
 + person.getSurname());
 System.out.println("First names: "
 + person.getFirstNames());
 }
 System.out.println("\n");
 }
}

class Personnel
//As defined in earlier example, but without
//implementation of the Serializable interface.
{
 private long payrollNum;
 private String surname;
 private String firstNames;

 public Personnel(long payNum,String sName,
 String fNames)
 {
 payrollNum = payNum;
 surname = sName;
 firstNames = fNames;
 }

 public long getPayNum()
 {
 return payrollNum;
 }

 public String getSurname()
 {
 return surname;
 }

 public String getFirstNames()
 {
 return firstNames;
 }

 public void setSurname(String sName)
 {
 surname = sName;

File Handling 123

 }
}

Output from this program is shown in Figure 4.6.

 Figure 4.6 Outputting the contents of serialised objects stored in a Vector.

4.9 Vectors and Serialisation

It is much more efficient to save a single Vector to disc than it is to save a series of
individual objects. Placing a series of objects into a single Vector is a very neat way
of packaging and transferring our objects. This technique carries another significant
advantage: we shall have some form of random access, via the Vector class's
elementAt method (albeit based on knowing each element's position within the
Vector). Without this, we have the considerable disadvantage of being restricted to
serial access only.

Example

This is the same as the example in the previous section, but now using a Vector for
transfer of objects to/from the file. We could use the same Vector object for sending
objects out to the file and for receiving them back from the file, but two Vector
objects have been used below simply to demonstrate beyond any doubt that the
values have been read back in (and are not simply the original values, still held in
the Vector object).

import java.io.*;
import java.util.*;

124 An Introduction to Network Programming with Java

public class VectorSerialise
{
 public static void main(String[] args)
 throws IOException, ClassNotFoundException
 {
 ObjectOutputStream outStream =
 new ObjectOutputStream(
 new FileOutputStream("personnelvec.dat"));
 Vector<Personnel> staffVectorOut =
 new Vector<Personnel>();
 Vector<Personnel> staffVectorIn =
 new Vector<Personnel>();

 Personnel[] staff =
 {new Personnel(123456,"Smith", "John"),
 new Personnel(234567,"Jones", "Sally Ann"),
 new Personnel(999999,"Black", "James Paul")};

 for (int i=0; i<staff.length; i++)
 staffVectorOut.add(staff[i]);

 outStream.writeObject(staffVectorOut);

 outStream.close();

 ObjectInputStream inStream =
 new ObjectInputStream(
 new FileInputStream("personnelvec.dat"));

 int staffCount = 0;

 try
 {
 staffVectorIn =
 (Vector<Personnel>)inStream.readObject();
 //The compiler will issue a warning for the
 //above line, but ignore this!

 for (Personnel person:staffVectorIn)
 {
 staffCount++;
 System.out.println(
 "\nStaff member " + staffCount);

 System.out.println("Payroll number: "
 + person.getPayNum());
 System.out.println("Surname: "
 + person.getSurname());

File Handling 125

 System.out.println("First names: "
 + person.getFirstNames());
 }
 System.out.println("\n");
 }
 catch (EOFException eofEx)
 {
 System.out.println(
 "\n\n*** End of file ***\n");
 inStream.close();
 }
 }
}

class Personnel implements Serializable
{
 private long payrollNum;
 private String surname;
 private String firstNames;

 public Personnel(long payNum,String sName,
 String fNames)
 {
 payrollNum = payNum;
 surname = sName;
 firstNames = fNames;
 }

 public long getPayNum()
 {
 return payrollNum;
 }

 public String getSurname()
 {
 return surname;
 }

 public String getFirstNames()
 {
 return firstNames;
 }

 public void setSurname(String sName)
 {
 surname = sName;
 }
}

126 An Introduction to Network Programming with Java

 Using methods covered in Chapter 2, the above code may be adapted very easily
to produce a simple client-server application in which the server supplies personnel
details in response to client requests. The only difference is that, instead of sending a
series of strings from the server to the client(s), we shall now be passing a vector.
Consequently, we shall not be making use of a PrintWriter object in our server.
Instead, we shall need to create an ObjectOutputStream object. We do this by
passing the OutputStream object returned by our server's Socket object to the
ObjectOutputStream constructor, instead of to the PrintWriter constructor (as was
done previously).

Example

Suppose that the Socket object is called link and the output object is called out. Then,
instead of

 PrintWriter out =
 new PrintWriter(link.getOutputStream(),true);

we shall have:

 ObjectOutputStream out =
 new ObjectOutputStream(link.getOutputStream());

 Since both server and client need to know about the Personnel class, we shall
hold this class in a separate file, in order to avoid code duplication and to allow the
class's reusability by other applications. The code for the server
(PersonnelServer.java), the client (PersonnelClient.java) and class Personnel is
shown below. You will find that the code for the server is an amalgamation of the
first half of MessageServer.java from Chapter 2 and the early part of
VectorSerialise.java from this section, while the code for the client is an
amalgamation of the first part of MessageClient.java (Chapter 2) and the remainder
of VectorSerialise.java. As with earlier cases, this example is unrealistically simple,
but serves to illustrate all the required steps of a socket-based client-server
application for transmitting whole objects, without overwhelming the reader with
unnecessary detail. Upon receiving the message 'SEND PERSONNEL DETAILS'
from a client, the server simply transmits the vector containing the three Personnel
objects used for demonstration purposes in this section and the previous one.

import java.io.*;
import java.net.*;
import java.util.*;

public class PersonnelServer
{
 private static ServerSocket serverSocket;
 private static final int PORT = 1234;
 private static Socket link;

File Handling 127

 private static Vector<Personnel> staffVectorOut;
 private static Scanner inStream;
 private static ObjectOutputStream outStream;

 public static void main(String[] args)
 {
 System.out.println("Opening port...\n");

 try
 {
 serverSocket = new ServerSocket(PORT);
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to attach to port!");
 System.exit(1);
 }

 staffVectorOut = new Vector<Personnel>();

 Personnel[] staff =
 {new Personnel(123456,"Smith", "John"),
 new Personnel(234567,"Jones", "Sally Ann"),
 new Personnel(999999,"Black", "James Paul")};

 for (int i=0; i<staff.length; i++)
 staffVectorOut.add(staff[i]);
 startServer();
 }

 private static void startServer()
 {
 do
 {
 try
 {
 link = serverSocket.accept();

 inStream =
 new Scanner(link.getInputStream());

 outStream =
 new ObjectOutputStream(
 link.getOutputStream());
 /*
 The above line and associated declaration

128 An Introduction to Network Programming with Java

 are the only really new code featured in
 this example.
 */

 String message = inStream.nextLine();
 if (message.equals(
 "SEND PERSONNEL DETAILS"))
 {
 outStream.writeObject(
 staffVectorOut);
 outStream.close();
 }

 System.out.println(
 "\n* Closing connection... *");
 link.close();
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 }while (true);
 }
}

 The only new point worthy of note in the code for the client is the necessary
inclusion of throws ClassNotFoundException, both in the method that
directly accesses the vector of Personnel objects (the run method) and in the method
that calls this one (the main method)...

import java.io.*;
import java.net.*;
import java.util.*;

public class PersonnelClient
{
 private static InetAddress host;
 private static final int PORT = 1234;

 public static void main(String[] args)
 throws ClassNotFoundException
 {
 try
 {
 host = InetAddress.getLocalHost();
 }

File Handling 129

 catch(UnknownHostException uhEx)
 {
 System.out.println("Host ID not found!");
 System.exit(1);
 }
 talkToServer();
 }

 private static void talkToServer()
 throws ClassNotFoundException
 {
 try
 {
 Socket link = new Socket(host,PORT);

 ObjectInputStream inStream =
 new ObjectInputStream(
 link.getInputStream());

 PrintWriter outStream =
 new PrintWriter(
 link.getOutputStream(),true);

 //Set up stream for keyboard entry...
 Scanner userEntry = new Scanner(System.in);

 outStream.println("SEND PERSONNEL DETAILS");
 Vector<Personnel> response =
 (Vector<Personnel>)inStream.readObject();
 /*
 As in VectorSerialise, the compiler will
 issue a warning for the line above.
 Simply ignore this warning.
 */

 System.out.println(
 "\n* Closing connection... *");
 link.close();

 int staffCount = 0;

 for (Personnel person:response)
 {
 staffCount++;
 System.out.println(
 "\nStaff member " + staffCount);
 System.out.println("Payroll number: "
 + person.getPayNum());

130 An Introduction to Network Programming with Java

 System.out.println("Surname: "
 + person.getSurname());

 System.out.println("First names: "
 + person.getFirstNames());
 }
 System.out.println("\n\n");
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 }
}

Finally, the code for the Personnel class...

class Personnel implements java.io.Serializable
{
 private long payrollNum;
 private String surname;
 private String firstNames;

 public Personnel(long payNum,String sName,
 String fNames)
 {
 payrollNum = payNum;
 surname = sName;
 firstNames = fNames;
 }

 public long getPayNum()
 {
 return payrollNum;
 }

 public String getSurname()
 {
 return surname;
 }

 public String getFirstNames()
 {
 return firstNames;
 }

 public void setSurname(String sName)

File Handling 131

 {
 surname = sName;
 }
}

Figure 4.7 shows a client accessing the server, while Figure 4.8 shows the
corresponding output at the server end.

 Figure 4.7 Client using ObjectInputStreams to retrieve 'Vectorised' data from a server.

 Fig. 4.8 Server providing 'Vectorised' data to client in preceding screenshot.

132 An Introduction to Network Programming with Java

Exercises

4.1 Using a text editor or wordprocessor, create a text file holding a series of
surnames and payroll numbers (at least five of each). For example:

 Smith
123456
Jones
987654
Jenkins
555555
 …
 …

Now write a Java program that uses a while loop to read values from the above
text file and displays then in a table under the headings 'Surname' and 'Payroll
No.'. (Don't be too concerned about precise alignment of the columns.)

4.2 Take a copy of the above program, rename the class and modify the appropriate
line so that the program accepts input from the standard input stream (i.e., using
a Scanner around the standard input stream, System.in). Then use redirection to
feed the values from your payroll text file into your program (displaying the
contents as before).

4.3 Write a (very short) program that creates a serial text file holding just two or
three names of your own choosing. After compiling and running the program,
use the MS-DOS command type (or the equivalent command for your
platform) to display the file's contents. For example:

 type names.txt

4.4 Using a text editor or word processor, create a text file containing a series of
five surnames and examination marks, each item on a separate line. For
example:

Smith
47
Jones
63
…
…

By extending the code given below, create a random access file called
results.dat, accepting input from the standard input stream (via a Scanner
object) and redirecting input from the above text file. Each record should
comprise a student surname and examination mark. When all records have been

File Handling 133

written, reposition the file pointer to the start of the file and then read each
record in turn, displaying its contents on the screen.

import java.io.*;
import java.util.*;

public class FileResults
{
 private static final long REC_SIZE = 34;
 private static final int SURNAME_SIZE = 15;
 private static String surname;
 private static int mark;

 public static void main(String[] args)
 throws IOException
 {

/**
 *** SUPPLY CODE FOR main! ***

**/
 }

 public static void writeString(
 RandomAccessFile file, String text,
 int fixedSize) throws IOException
 {
 int size = text.length();

 if (size<=fixedSize)
 {
 file.writeChars(text);
 for (int i=size; i<fixedSize; i++)
 file.writeChar(' ');
 }
 else
 file.writeChars(text.substring(
 0,fixedSize));
 }

 public static String readString(
 RandomAccessFile file, int fixedSize)

 throws IOException
 {
 String value = "";
 for (int i=0; i<fixedSize; i++)
 value+=file.readChar();
 return value;
 }
}

134 An Introduction to Network Programming with Java

4.5 Making use of class Results shown below, repeat the above program, this time
writing/reading objects of class Result. (When displaying the names and marks
that have been read, of course, you must make use of the methods of class
Result.) Once again, redirect initial input to come from your text file.

class Result implements Serializable
{
 private String surname;
 private int mark;

 public Result(String name, int score)
 {
 surname = name;
 mark = score;
 }

 public String getName()
 {
 return surname;
 }

 public void setName(String name)
 {
 surname = name;
 }

 public int getMark()
 {
 return mark;
 }

 public void setMark(int score)
 {
 if ((score>=0) && (score<=100))
 mark = score;
 }
}

4.6 Using class Personnel from Section 4.9, create a simple GUI-based program
called ChooseSaveFile.java that has no components, but creates an instance of
itself within main and has the usual window-closing code (also within main).
Within the constructor for the class, declare and initialise an array of three
Personnel objects (as in program VectorSerialise.java from Section 4.9) and
write the objects from the array to a file (using an ObjectOutputStream). The
name and location of the file should be chosen by the user via a JFileChooser
object. Note that you will need to close down the (empty) application window
by clicking on the window close box.

File Handling 135

4.7 Take a copy of the above program, rename it ReadFile.java and modify the
code to make use of a JFileChooser object that allows a file to be selected for
reading. Use the JFileChooser object to read from the file created above and get
your program to use method getSurname of class Personnel to display the
surnames of all the staff whose details were saved.

5 Remote Method Invocation (RMI)

Learning Objectives
After reading this chapter, you should:

• understand the fundamental purpose of RMI;
• understand how RMI works;
• be able to implement an RMI client/server application involving

.class files that are available locally;
• appreciate the potential danger presented by .class files

downloaded from remote locations;
• know how security managers may be used to overcome the above

danger.

With all our method calls so far, the objects upon which such methods have been
invoked have been local. However, in a distributed environment, it is often desirable
to be able to invoke methods on remote objects (i.e., on objects located on other
systems). RMI (Remote Method Invocation) provides a platform-independent means
of doing just this. Under RMI, the networking details required by explicit
programming of streams and sockets disappear and the fact that an object is located
remotely is almost transparent to the Java programmer. Once a reference to the
remote object has been obtained, the methods of that object may be invoked in
exactly the same way as those of local objects. Behind the scenes, of course, RMI
will be making use of byte streams to transfer data and method invocations, but all
of this is handled automatically by the RMI infrastructure. RMI has been a core
component of Java from the earliest release of the language, but has undergone some
evolutionary changes since its original specification.

5.1 The Basic RMI Process

Though the above paragraph referred to obtaining a reference to a remote object, this
was really a simplification of what actually happens. The server program that has
control of the remote object registers an interface with a naming service, thereby
making this interface accessible by client programs. The interface contains the
signatures for those methods of the object that the server wishes to make publicly
available. A client program can then use the same naming service to obtain a
reference to this interface in the form of what is called a stub. This stub is
effectively a local surrogate (a 'stand-in' or placeholder) for the remote object. On
the remote system, there will be another surrogate called a skeleton. When the client
program invokes a method of the remote object, it appears to the client as though the
method is being invoked directly on the object. What is actually happening,
however, is that an equivalent method is being called in the stub. The stub then
forwards the call and any parameters to the skeleton on the remote machine. Only

Remote Method Invocation (RMI) 137

primitive types and those reference types that implement the Serializable interface
may be used as parameters. (The serialising of these parameters is called
marshalling.)
 Upon receipt of the byte stream, the skeleton converts this stream into the original
method call and associated parameters (the deserialisation of parameters being
referred to as unmarshalling). Finally, the skeleton calls the implementation of the
method on the server. The stages of this process are shown diagrammatically in
Figure 5.1. Even this is a simplification of what is actually happening at the network
level, however, since the transport layer and a special layer called the remote
reference layer will also be involved at each end of the transmission. In fact, the
skeleton was removed entirely in J2SE 1.2 and server programs now communicate
directly with the remote reference layer. However, the basic principles remain the
same and Figure 5.1 still provides a useful graphical representation of the process.

 Local machine Remote machine

 Figure 5.1 Using RMI to invoke a method of a remote object.

If the method has a return value, then the above process is reversed, with the return
value being serialised on the server (by the skeleton) and deserialised on the client
(by the stub).

5.2 Implementation Details

The packages used in the implementation of an RMI client-server application are
java.rmi, java.rmi.server and java.rmi.registry, though only the first two need to be
used explicitly. The basic steps are listed below.

1. Create the interface.

Method call

 Stub

Method
implementation

 Skeleton

Client Server

Apparent invocation flow:
Actual invocation flow:

138 An Introduction to Network Programming with Java

2. Define a class that implements this interface.
3. Create the server process.
4. Create the client process.

Simple Example

This first example application simply displays a greeting to any client that uses the
appropriate interface registered with the naming service to invoke the associated
method implementation on the server. In a realistic application, there would almost
certainly be more methods and those methods would belong to some class (as will
be shown in a later example). However, we shall adopt a minimalistic approach until
the basic method has been covered. The required steps will be numbered as above…

1. Create the interface.

This interface should import package java.rmi and must extend interface Remote,
which (like Serializable) is a 'tagging' interface that contains no methods. The
interface definition for this example must specify the signature for method
getGreeting, which is to be made available to clients. This method must declare that
it throws a RemoteException. The contents of this file are shown below.

import java.rmi.*;

public interface Hello extends Remote
{
 public String getGreeting() throws RemoteException;
}

2. Define a class that implements this interface.

The implementation file should import packages java.rmi and java.rmi.server. The
implementation class must extend class RemoteObject or one of RemoteObject's
subclasses. In practice, most implementations extend subclass
UnicastRemoteObject, since this class supports point-to-point communication using
TCP streams. The implementation class must also implement our interface Hello, of
course, by providing an executable body for the single interface method getGreeting.
In addition, we must provide a constructor for our implementation object (even if
we simply give this constructor an empty body, as below). Like the method(s)
declared in the interface, this constructor must declare that it throws a
RemoteException. Finally, we shall adopt the common convention of appending
Impl onto the name of our interface to form the name of the implementation class.

import java.rmi.*;
import java.rmi.server.*;

public class HelloImpl extends UnicastRemoteObject
 implements Hello
{
 public HelloImpl() throws RemoteException

Remote Method Invocation (RMI) 139

 {
 //No action needed here.
 }

 public String getGreeting() throws RemoteException
 {
 return ("Hello there!");
 }
}

3. Create the server process.

The server creates object(s) of the above implementation class and registers them
with a naming service called the registry. It does this by using static method rebind
of class Naming (from package java.rmi). This method takes two arguments:

• a String that holds the name of the remote object as a URL with
protocol rmi;

• a reference to the remote object (as an argument of type Remote).
The method establishes a connection between the object's name and its reference.
Clients will then be able to use the remote object's name to retrieve a reference to
that object via the registry.
 The URL string, as well as specifying a protocol of rmi and a name for the object,
specifies the name of the remote object's host machine. For simplicity's sake, we
shall use localhost (which is what RMI assumes by default anyway). The default
port for RMI is 1099, though we can change this to any other convenient port if we
wish. The code for our server process is shown below and contains just one method:
main. To cater for the various types of exception that may be generated, this method
declares that it throws Exception.

import java.rmi.*;

public class HelloServer
{
 private static final String HOST = "localhost";

 public static void main(String[] args)
 throws Exception
 {
 //Create a reference to an
 //implementation object...
 HelloImpl temp = new HelloImpl();

 //Create the string URL holding the
 //object's name...
 String rmiObjectName = "rmi://" + HOST + "/Hello";
 //(Could omit host name here, since 'localhost'
 //would be assumed by default.)

140 An Introduction to Network Programming with Java

 //'Bind' the object reference to the name...
 Naming.rebind(rmiObjectName,temp);

 //Display a message so that we know the process
 //has been completed...
 System.out.println("Binding complete...\n");
 }
}

4. Create the client process.

The client obtains a reference to the remote object from the registry. It does this by
using method lookup of class Naming, supplying as an argument to this method the
same URL that the server did when binding the object reference to the object's name
in the registry. Since lookup returns a Remote reference, this reference must be
typecast into an Hello reference (not an HelloImpl reference!). Once the Hello
reference has been obtained, it can be used to call the solitary method that was made
available in the interface.

import java.rmi.*;

public class HelloClient
{
 private static final String HOST = "localhost";

 public static void main(String[] args)
 {
 try
 {
 //Obtain a reference to the object from the
 //registry and typecast it into the appropriate
 //type...
 Hello greeting =
 (Hello)Naming.lookup("rmi://"
 + HOST + "/Hello");

 //Use the above reference to invoke the remote
 //object's method...
 System.out.println("Message received: "
 + greeting.getGreeting());
 }
 catch(ConnectException conEx)
 {
 System.out.println(
 "Unable to connect to server!");
 System.exit(1);
 }
 catch(Exception ex)
 {

Remote Method Invocation (RMI) 141

 ex.printStackTrace();
 System.exit(1);
 }
 }
}

Note that some authors choose to combine the implementation and server into one
class. This author, however, feels that the separation of the two probably results in a
clearer delineation of responsibilities.

The method required for running the above application is provided in the next
section.

5.3 Compilation and Execution

There are several steps that need to be carried out, as described below.

1. Compile all files with javac.

This is straightforward...
javac Hello.java
javac HelloImpl.java
javac HelloServer.java
javac HelloClient.java

2. Compile the implementation class with the rmic compiler.

This compiler is one of the utilities supplied with the J2SE. Though it might seem
strange to have a compiler operate on anything other than source code, this compiler
operates on the .class file generated by the above compilation of the implementation
file. Used without any command line option, it will generate both a stub file and a
skeleton file. As mentioned in Section 5.1, however, Java 2 does not require the
skeleton file. If Java 2 is being used, then command line option -v1.2 should be
employed (as shown below), so that only the stub file is generated.

rmic -v1.2 HelloImpl
This will cause a file with the name HelloImpl_stub.class to be created.

3. Start the RMI registry.

Enter the following command:
rmiregistry

When this is executed, the only indication that anything has happened is a change in
the command window's title. For the author's Java implementation, the change is as
shown in Figure 5.2.

142 An Introduction to Network Programming with Java

 Figure 5.2 Starting the RMI registry.

4. Open a new window and run the server.

From the new window, invoke the Java interpreter:
java HelloServer

Server output is shown in Figure 5.3.

 Figure 5.3 Output from the HelloServer RMI program.

5. Open a third window and run the client.

Again, invoke the Java interpreter:
java HelloClient

Output is as shown in Figure 5.4.

Remote Method Invocation (RMI) 143

 Figure 5.4 Output from the HelloClient RMI program.

Since the server process and the RMI registry will continue to run indefinitely after
the client process has finished, they will need to be closed down by entering Ctrl-C
in each of their windows.

Now that the basic process has been covered, the next section will examine a more
realistic application of RMI.

5.4 Using RMI Meaningfully

In a realistic RMI application, multiple methods and probably multiple objects will
be employed. With such real-world applications, there are two possible strategies
that may be adopted, as described below.

• Use a single instance of the implementation class to hold instance(s) of a
class whose methods are to be called remotely. Pass instance(s) of the
latter class as argument(s) of the constructor for the implementation
class.

• Use the implementation class directly for storing required data and
methods, creating instances of this class, rather than using separate
class(es).

Some authors use the first strategy, while others use the second. Each approach has
its merits and both will be illustrated below by implementing the same application,
so that the reader may compare the two techniques and choose his/her own
preference.

144 An Introduction to Network Programming with Java

Example

This application will make bank account objects available to connecting clients,
which may then manipulate these remote objects by invoking their methods. For
simplicity's sake, just four account objects will be created and the practical
considerations relating to security of such accounts will be ignored completely!

Each of the above two methods will be implemented in turn...

Method 1
Instance variables and associated methods for an individual account will be
encapsulated within an application class called Account. If this class does not
already exist, then it must be created, adding a further step to the four steps specified
in Section 5.2. This step will be inserted as step 3 in the description below.

1. Create the interface.

Our interface will be called Bank1and will provide access to details of all accounts
via method getBankAccounts. This method returns a Vector of Account objects that
will be declared within the implementation class. The code is shown below:

import java.rmi.*;
import java.util.Vector;

public interface Bank1 extends Remote
{
 public Vector<Account> getBankAccounts()
 throws RemoteException;
}

2. Define the implementation.

The code for the implementation class provides both a definition for the above
method and the definition for a constructor to set up the Vector of Account objects:

import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;

public class Bank1Impl extends UnicastRemoteObject
 implements Bank1
{
 //Declare the Vector that will hold Account
 //objects...
 private Vector<Account> acctInfo;

 //The constructor must be supplied with a Vector of
 //Account objects...

Remote Method Invocation (RMI) 145

 public Bank1Impl(Vector<Account> acctVals)
 throws RemoteException
 {
 acctInfo = acctVals;
 }

 //Definition for the single interface method...
 public Vector<Account> getBankAccounts()
 throws RemoteException
 {
 return acctInfo;
 }
}

3. Create any required application classes.

In this example, there is only class Account to be defined. Since it is to be used in
the return value for our interface method, it must be declared to implement the
Serializable interface (contained in package java.io).

public class Account implements java.io.Serializable
{
 //Instance variables...
 private int acctNum;
 private String surname;
 private String firstNames;
 private double balance;

 //Constructor...
 public Account(int acctNo, String sname,
 String fnames, double bal)
 {
 acctNum = acctNo;
 surname = sname;
 firstNames = fnames;
 balance = bal;
 }

 //Methods...

 public int getAcctNum()
 {
 return acctNum;
 }

 public String getName()
 {
 return (firstNames + " " + surname);
 }

146 An Introduction to Network Programming with Java

 public double getBalance()
 {
 return balance;
 }

 public double withdraw(double amount)
 {
 if ((amount>0) && (amount<=balance))
 return amount;
 else
 return 0;
 }

 public void deposit(double amount)
 {
 if (amount > 0)
 balance += amount;
 }
}

4. Create the server process.

The code for the server class sets up a Vector holding four initialised Account
objects and then creates an implementation object, using the Vector as the argument
of the constructor. The reference to this object is bound to the programmer-chosen
name Accounts (which must be specified as part of a URL identifying the host
machine) and placed in the registry. The server code is shown below.

import java.rmi.*;
import java.util.Vector;

public class Bank1Server
{
 private static final String HOST = "localhost";

 public static void main(String[] args)
 throws Exception
 {
 //Create an initialised array of four Account
 //objects...
 Account[] account =
 {new Account(111111,"Smith","Fred James",112.58),
 new Account(222222,"Jones","Sally",507.85),
 new Account(234567,"White","Mary Jane",2345.00),
 new Account(666666,"Satan","Beelzebub",666.00)};

 Vector<Account> acctDetails =
 new Vector<Account>();

Remote Method Invocation (RMI) 147

 //Insert the Account objects into the Vector...
 for (int i=0; i<account.length; i++)
 acctDetails.add(account[i]);

 //Create an implementation object, passing the
 //above Vector to the constructor...
 Bank1Impl temp = new Bank1Impl(acctDetails);

 //Save the object's name in a String...
 String rmiObjectName =
 "rmi://" + HOST + "/Accounts";
 //(Could omit host name, since 'localhost' would be
 //assumed by default.)

 //Bind the object's name to its reference...
 Naming.rebind(rmiObjectName,temp);

 System.out.println("Binding complete...\n");
 }
}

5. Create the client process.

The client uses method lookup of class Naming to obtain a reference to the remote
object, typecasting it into type Bank1. Once the reference has been retrieved, it can
be used to execute remote method getBankAccounts. This returns a reference to the
Vector of Account objects which, in turn, provides access to the individual Account
objects. The methods of these Account objects can then be invoked as though those
objects were local.

import java.rmi.*;
import java.util.Vector;

public class Bank1Client
{
 private static final String HOST = "localhost";

 public static void main(String[] args)
 {
 try
 {
 //Obtain a reference to the object from the
 //registry and typecast it into the appropriate
 //type...

 Bank1 temp = (Bank1)Naming.lookup(
 "rmi://" + HOST + "/Accounts");

148 An Introduction to Network Programming with Java

 Vector<Account> acctDetails =
 temp.getBankAccounts();

 //Simply display all acct details...
 for (int i=0; i<acctDetails.size(); i++)
 {
 //Retrieve an Account object from the
 //Vector...
 Account acct = acctDetails.elementAt(i);

 //Now invoke methods of Account object
 //to display its details...
 System.out.println("\nAccount number: "
 + acct.getAcctNum());
 System.out.println("Name: "
 + acct.getName());
 System.out.println("Balance: "
 + acct.getBalance());
 }
 }
 catch(ConnectException conEx)
 {
 System.out.println(
 "Unable to connect to server!");
 System.exit(1);
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 }
}

The steps for compilation and execution are the same as those outlined in the
previous section for the Hello example, with the minor addition of compiling the
source code for class Account. The steps are shown below.

1. Compile all files with javac.

This time, there are five files...
javac Bank1.java
javac Bank1Impl.java
javac Account.java
javac Bank1Server.java
javac Bank1Client.java

Remote Method Invocation (RMI) 149

2. Compile the implementation class with the rmic compiler.

rmic -v1.2 Bank1Impl
This will cause a file with the name Bank1Impl_stub.class to be created.

3. Start the RMI registry.

Enter the following command:
rmiregistry

The contents of the registry window will be identical to the screenshot shown in
Figure 5.2.

4. Open a new window and run the server.

From the new window, invoke the Java interpreter:
java Bank1Server

Server output is as shown in Figure 5.3.

5. Open a third window and run the client.

Again, invoke the Java interpreter:
java Bank1Client

Output is shown in Figure 5.5 below.

 Figure 5.5 Output from the Bank1Client RMI program.

Once again, the server process and the RMI registry will need to be closed down by
entering Ctrl-C in each of their windows.

Method 2
For this method, no separate Account class is used. Instead, the data and methods
associated with an individual account will be defined directly in the implementation

150 An Introduction to Network Programming with Java

class. The interface will make the methods available to client processes. The same
four steps as were identified in Section 5.2 must be carried out, as described below.

1. Create the interface.

The same five methods that appeared in class Account in Method 1 are declared, but
with each now declaring that it throws a RemoteException.

import java.rmi.*;

public interface Bank2 extends Remote
{
 public int getAcctNum()throws RemoteException;

 public String getName()throws RemoteException;

 public double getBalance()throws RemoteException;

 public double withdraw(double amount)
 throws RemoteException;

 public void deposit(double amount)
 throws RemoteException;
}

2. Define the implementation.

As well as holding the data and method implementations associated with an
individual account, this class defines a constructor for implementation objects. The
method definitions will be identical to those that were previously held within the
Account class, of course.

import java.rmi.*;
import java.rmi.server.*;

public class Bank2Impl extends UnicastRemoteObject
 implements Bank2
{
 private int acctNum;
 private String surname;
 private String firstNames;
 private double balance;

 //Constructor for implementation objects...
 public Bank2Impl(int acctNo, String sname,
 String fnames, double bal) throws RemoteException
 {
 acctNum = acctNo;
 surname = sname;

Remote Method Invocation (RMI) 151

 firstNames = fnames;
 balance = bal;
 }

 public int getAcctNum() throws RemoteException
 {
 return acctNum;
 }

 public String getName() throws RemoteException
 {
 return (firstNames + " " + surname);
 }

 public double getBalance() throws RemoteException
 {
 return balance;
 }

 public double withdraw(double amount)
 throws RemoteException
 {
 if ((amount>0) && (amount<=balance))
 return amount;
 else
 return 0;
 }

 public void deposit(double amount)
 throws RemoteException
 {
 if (amount > 0)
 balance += amount;
 }
}

3. Create the server process.

The server class creates an array of implementation objects and binds each one
individually to the registry. The name used for each object will be formed from
concatenating the associated account number onto the word 'Account' (forming
'Account111111', etc.).

import java.rmi.*;

public class Bank2Server
{
 private static final String HOST = "localhost";

152 An Introduction to Network Programming with Java

 public static void main(String[] args)
 throws Exception
 {
 //Create array of initialised implementation
 //objects...
 Bank2Impl[] account =
 {new Bank2Impl(111111,"Smith",
 "Fred James",112.58),
 new Bank2Impl(222222,"Jones","Sally",507.85),
 new Bank2Impl(234567,"White",
 "Mary Jane",2345.00),
 new Bank2Impl(666666,"Satan",
 "Beelzebub",666.00)};

 for (int i=0; i<account.length; i++)
 {
 int acctNum = account[i].getAcctNum();

 /*
 Generate each account name (as a concatenation
 of 'Account' and the account number) and bind
 it to the appropriate object reference in the
 array...
 */
 Naming.rebind("rmi://" + HOST + "/Account"
 + acctNum, account[i]);
 }

 System.out.println("Binding complete...\n");
 }
}

4. Create the client process.

 The client again uses method lookup, this time to obtain references to individual
accounts (held in separate implementation objects):

import java.rmi.*;

public class Bank2Client
{
 private static final String HOST = "localhost";
 private static final int[] acctNum =
 {111111,222222,234567,666666};

 public static void main(String[] args)
 {
 try
 {

Remote Method Invocation (RMI) 153

 //Simply display all account details...

 for (int i=0; i<acctNum.length; i++)
 {
 /*
 Obtain a reference to the object from the
 registry and typecast it into the
 appropriate type...
 */
 Bank2 temp =
 (Bank2)Naming.lookup("rmi://" + HOST
 + "/Account" + acctNum[i]);

 //Now invoke the methods of the interface to
 //display details of associated account...
 System.out.println("\nAccount number: "
 + temp.getAcctNum());
 System.out.println("Name: "
 + temp.getName());
 System.out.println("Balance: "
 + temp.getBalance());
 }
 }
 catch(ConnectException conEx)
 {
 System.out.println(
 "Unable to connect to server!");
 System.exit(1);
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 }
}

Output for this client will be exactly as shown in Figure 5.5 for Method 1.

5.5 RMI Security

If both the client and server processes have direct access to the same class files, then
there is no need to take special security precautions, since no security holes can be
opened up by such an arrangement. However, an application receiving an object for
which it does not have the corresponding class file can try to load that class file
from a remote location and instantiate the object in its JVM. Unfortunately, an
object passed as an RMI argument from such a remote source can attempt to initiate

154 An Introduction to Network Programming with Java

execution on the client's machine immediately upon deserialisation ⎯ without the
user/programmer doing anything with it! Such a security breach is not permitted to
occur, of course. The loading of this file is handled by an object of class
SecureClassLoader, which must have security restrictions defined for it. File
java.policy defines these security restrictions, while file java.security defines the
security properties. Implementation of the security policy is controlled by an object
of class RMISecurityManager (a subclass of SecurityManager). The
RMISecurityManager creates the same 'sandbox' rules that govern applets. Without
such an object, a Java application will not even attempt to load classes that are not
from its local file system.
 Though the security policy can be modified by use of the Java utility policytool,
this can be done only for individual hosts, so it is probably more straightforward to
write and install one's own security manager. There is a default
RMISecurityManager, but this relies on the system's default security policy, which is
far too restrictive to permit the downloading of class files from a remote site. In
order to get round this problem, we must create our own security manager that
extends RMISecurityManager. This security manager must provide a definition for
method checkPermission, which takes a single argument of class Permission from
package java.security. For simplicity's sake and because the complications involved
with specifying security policies go beyond the scope of this text, we shall illustrate
the procedure with the simplest possible security manager ⎯ one that allows
everything! The code for this security manager is shown below.

import java.rmi.*;
import java.security.*;

public class ZeroSecurityManager
 extends RMISecurityManager
{
 public void checkPermission(Permission permission)
 {
 System.out.println("checkPermission for : "
 + permission.toString());
 }
}

 As with all our associated RMI application files, this file must be compiled with
javac. The client program must install an object of this class by invoking method
setSecurityManager, which is a static method of class System that takes a single
argument of class SecurityManager (or a subclass of SecurityManager, of course).
For illustration purposes, the code for our HelloClient program is reproduced below,
now incorporating a call to setSecurityManager. This call is shown in emboldened
text.

import java.rmi.*;

public class HelloClient
{

Remote Method Invocation (RMI) 155

 private static final String HOST = "localhost";

 public static void main(String[] args)
 {
 //Here's the new code...
 if (System.getSecurityManager() == null)
 {
 System.setSecurityManager(
 new ZeroSecurityManager());
 }

 try
 {
 Hello greeting =
 (Hello)Naming.lookup(
 "rmi://" + HOST + "/Hello");

 System.out.println("Message received: "
 + greeting.getGreeting());
 }
 catch(ConnectException conEx)
 {
 System.out.println(
 "Unable to connect to server!");
 System.exit(1);
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 }
}

 When executing the server, we need to specify where the required .class files are
located, so that clients may download them. To do this, we need to set the
java.rmi.server.codebase property to the URL of this location, at the same time that
the server is started. This is achieved by using the -D command line option to
specify the setting of the codebase property. For example, if the URL of the file
location is http://java.shu.ac.uk/rmi/, then the following line would set our
HelloServer program running and would set the codebase property to the required
location at the same time:

java -Djava.rmi.server.codebase=http://java.shu.ac.uk/rmi/ HelloServer

 It is very easy to make a slip during the above process that will cause the
application to fail, but coverage of these problems goes beyond the scope of this
text.

156 An Introduction to Network Programming with Java

Exercises

5.1 Using class Result (shown below) and making the minor modification that will
ensure that objects of this class are serialisable, make method getResults
available via an RMI interface. This method should return a Vector containing
initialised Result objects that are set up by a server program (also to be written
by you) and made available via an implementation object placed in the RMI
registry by the server. The server should store two Result objects in the Vector
contained within the implementation object. Access this implementation object
via a client program and use the methods of the Result class to display the
surname and examination mark for each of the two Result objects. (I.e., employ
'Method 1' from Section 5.4.)

 You should find the solution to the above problem relatively straightforward by
simply modifying the code for the Bank example application from this chapter.

class Result implements java.io.Serializable
{
 private String surname;
 private int mark;

 public Result(String name, int score)
 {
 surname = name;
 mark = score;
 }

 public String getName()
 {
 return surname;
 }

 public void setName(String name)
 {
 surname = name;
 }

 public int getMark()
 {
 return mark;
 }

 public void setMark(int score)
 {
 if ((score>=0) && (score<=100))
 mark = score;

Remote Method Invocation (RMI) 157

 }
}

5.2 Repeat the above exercise, this time without using a separate Result class, but
holding the result methods directly in the implementation class. (I.e., use
'Method 2' from Section 5.4.) Store the implementation objects remotely under
the names result1 and result2. Access these objects via a client program and use
the methods of the implementation class to display the surnames and
examination marks for each of the two objects.

6 CORBA

Learning Objectives
After reading this chapter, you should:

• understand the basic principles of CORBA;
• appreciate the importance of CORBA in providing a method for

implementing distributed objects in a platform-independent and
language-independent manner;

• know how to create IDL specifications;
• know how to create server processes for use with the Java IDL

ORB;
• know how to create client processes for use with the Java IDL

ORB;
• know how to create and use CORBA factory objects.

Though RMI is a powerful mechanism for distributing and processing objects in a
platform-independent manner, it has one significant drawback ⎯ it only works with
objects that have been created using Java. Convenient though it might be if Java
were the only language used for creating software objects, this simply is not the case
in the real world. A more generic approach to the development of distributed
systems is offered by CORBA (Common Object Request Broker Architecture),
which allows objects written in a variety of programming languages to be accessed
by client programs which themselves may be written in a variety of programming
languages.

6.1 Background and Basics

CORBA is a product of the OMG (Object Management Group), a consortium of
over 800 companies spanning most of the I.T. industry (with the notable exception
of Microsoft!) that is dedicated to defining and promoting industry standards for
object technology. The first version of CORBA appeared in 1991 and the current
version (at the time of writing) is 3.0. In keeping with the ethos of the OMG,
CORBA is not a specific implementation, but a specification for creating and using
distributed objects. An individual implementation of this specification constitutes an
ORB (Object Request Broker) and there are several such implementations currently
available on the market. Notable examples include VisiBroker from Inprise, Orbix
from Iona Technologies and the Java IDL from JavaSoft. The last of these
constitutes one of the core packages of the J2SE (from version 1.2 upwards) and is
the ORB that will be used for all the examples in this chapter. Whereas RMI ORBs
use a protocol called JRMP (Java Remote Method Protocol), CORBA ORBs use
IIOP (Internet Inter-Orb Protocol), which is based on TCP/IP. It is IIOP that
provides interoperability between ORBs from different vendors.

CORBA 159

 Another fundamental difference between RMI and CORBA is that, whereas RMI
uses Java to define the interfaces for its objects, CORBA uses a special language
called Interface Definition Language (IDL) to define those interfaces. Although
this language has syntactic similarities to C++, it is not a full-blown programming
language. In order for any ORB to provide access to software objects in a particular
programming language, the ORB has to provide a mapping from the IDL to the
target language. Mappings currently specified include ones for Java, C++, C,
Smalltalk, COBOL and Ada.
 At the client end of a CORBA interaction, there is a code stub for each method
that is to be called remotely. This stub acts as a proxy (a 'stand-in') for the remote
method. At the server end, there is skeleton code that also acts as a proxy for the
required method and is used to translate the incoming method call and any
parameters into their implementation-specific format, which is then used to invoke
the method implementation on the associated object. Method invocation passes
through the stub on the client side, then through the ORB and finally through the
skeleton on the server side, where it is executed on the object. For a client and server
using the same ORB, Figure 6.1 shows the process.

 Figure 6.1 Remote method invocation when client and server are using the same ORB.

Figure 6.2 shows the same interaction for client and server processes operating on
different ORBs.

6.2 The Structure of a Java IDL Specification

 Java IDL includes an OMG-compliant version of the IDL and the corresponding
mapping from this IDL into Java. Some unnecessary confusion is caused by the
name Java IDL, which seems to imply that the product comprises just an IDL.
Indeed, some of the pages on the Sun site refer to the IDL model and the Java ORB
as being separate entities. Mostly, however, Java IDL is referred to as the ORB
itself, with this taken to include the IDL-to-Java mapping.
 IDL supports a class hierarchy, at the root of which is class Object. This is not
the same as the Java language's Object class and is identified as

 ORB

IDL
skeleton

IDL
stub

 Client Object
implementation

Request

160 An Introduction to Network Programming with Java

org.omg.CORBA.Object (a subclass of java.lang.Object) in Java. Some CORBA
operations (such as name lookup) return an object of class org.omg.CORBA.Object,
which must then be 'narrowed' explicitly (effectively, typecast into a more specific
class). This is achieved by using a 'helper' class that is generated by the idlj compiler
(along with stubs, skeletons and other files).

 Figure 6.2 Remote invocation when client and server are using different ORBs.

 An IDL specification is contained within a file with the suffix .idl. The
surrounding structure within this file is normally a module (though it may be an
interface), which corresponds to a package in Java (and will cause a Java package
statement to be generated when the IDL is compiled). The module declaration
commences with the keyword module, followed by the name of the specific
module (beginning with a capital letter, even though the Java convention is for a
package name to begin with a lower-case letter). The body of the module declaration
is enclosed by curly brackets and, like C++ (but unlike Java), is terminated with a
semi-colon. For a module called Sales, then, the top level structure would look like
this:

module Sales
{
 ;
 ;
 ;
};

Note the mandatory semi-colon following the closing bracket!

 Internet

IIOP

IDL
skeleton

IDL
stub

 Client Object
implementation

Request

IDL
skeleton

IDL
stub

 Client Object
implementation

Request

 Request

 ORB ORB

CORBA 161

 Within the body of the module, there will be one or more interface declarations,
each corresponding to an application class on the server and each commencing with
the keyword interface, followed by the name of the interface. (When the IDL is
compiled, each statement will generate a Java interface statement.) The body of
each interface declaration is enclosed by curly brackets and specifies the data
properties and the signatures of the operations (in CORBA terminology) that are to
be made accessible to clients. Each data property is declared with the following
syntax:
 attribute <type> <name>;

For example:
attribute long total;

By default, this attribute will be a 'read-and-write' attribute and will automatically be
mapped to a pair of Java accessor and mutator methods ('get' and 'set') methods
when the IDL file is compiled. For some strange reason, these methods do not
contain the words 'get' and 'set' or any equivalent verbs, but have the same names as
their (noun) attributes. [This is not good programming practice, at least as far as the
'set' method is concerned!] The accessor and mutator methods for a given attribute
have exactly the same name, then, but are distinguished from each other by having
different signatures. The 'get' method takes no arguments and simply returns the
value of the attribute, while the 'set' method takes an argument of the corresponding
Java type and has a return type of void (though only the different argument lists are
significant for the compiler, of course). For the example above, the accessor and
mutator methods have the following signatures:

 int total(); //Accessor.
 void total(int i); //Mutator.

If we wish to make an attribute read-only (i.e., non-modifiable), then we can do this
by using the modifier readonly. For example:

 readonly attribute long total;

This time, only the accessor method will be created when the file is compiled. The
full set of basic types that may be used in attribute declarations is shown in Table
6.1, with the corresponding Java types alongside. The complete table can be found at
the following URL:

http://java.sun.com/j2se/1.4/docs/guide/idl/mapping/jidlMapping.html

Within each operation signature, the basic types available for the return type are as
above, but with the addition of void. Types short, long and long long may
also be preceded by the qualifier unsigned, but this will not affect the targets of
their mappings. The qualifier const may also be used (though this generates an
initialised variable in Java, rather than a constant indicated by the Java qualifier
final).

162 An Introduction to Network Programming with Java

IDL Type Java Type
boolean boolean
char and wchar char
octet byte
string and
wstring

String

short short
long int
long long long
double double
fixed java.math.BigDecimal

 Table 6.1 IDL types and their Java equivalents.

 Parameters may have any of the basic types that data properties have, of course.
In addition to this, each parameter declaration commences with in (for an input
parameter), out (for an output parameter) or inout (for an update parameter).

Example

module Sales
{
 interface StockItem
 {
 readonly attribute string code;
 attribute long currentLevel;

 long addStock(in long incNumber);
 long removeStock(in long decNumber);
 };

 interface
 {
 ;
 ;
 };
 (Etc.)......
 (Etc.)......
};

(Again, notice the semi-colons after closing brackets!)

If only one interface is required, then some programmers may choose to omit the
module level in the .idl file.
 In addition to the basic types, there are six structured types that may be specified
in IDL: enum, struct, union, exception, sequence and array. The first
four of these are mapped to classes in Java, while the last two are mapped to arrays.

CORBA 163

(The difference between a sequence and an array in IDL is that a sequence does
not have a fixed size.) Since enum, struct and union are used only infrequently,
they will not be given further coverage here.
 IDL exceptions are of two types: system exceptions and user-defined exceptions.
The former inherit (indirectly) from java.lang.RuntimeException and are unchecked
exceptions (i.e., can be ignored, if we wish), while the latter inherit (indirectly) from
java.lang.Exception via org.omg.CORBA.UserException and are checked exceptions
(i.e., must be either caught and handled or be thrown for the runtime environment to
handle). To specify that a method may cause an exception to be generated, the
keyword raises is used. For example:

 void myMethod(in dummy) raises (MyException);
(Note that brackets are required around the exception type.)

Obviously, raises maps to throws in Java.
 One final IDL keyword worth mentioning is typedef. This allows us to create
new types from existing ones. For example:

 typedef sequence<long> IntSeq;

This creates a new type called IntSeq, which is equivalent to a sequence/array of
integers. This new type can then be used in data property declarations. For example:

 attribute IntSeq numSeq;

N.B. If a structured type (array, sequence, etc.) is required as a data attribute or
parameter, then we cannot declare it directly as a structured type, but must use
typedef to create the new type and then use that new type. Thus, a declaration
such as
 attribute sequence<long> numSeq;
would be rejected.

6.3 The Java IDL Process

At the heart of Java IDL is a compiler that translates the programmer’s IDL into
Java constructs, according to the IDL-to-Java mapping. Prior to J2SE 1.3, this
compiler was called idltojava and was available as a separate download. As of J2SE
1.3, the compiler is called idlj and is part of the core Java download. The stub and
skeleton files (and a number of other files) are generated by the idlj compiler for
each object type that is specified in the .idl file. Once these files have been
generated, the Java implementation files may be written, compiled and linked with
the idlj-generated files and the ORB library to create an object server, after which
client program(s) may be written to access the service provided.
 Although the preceding two sentences summarise the basic procedure, there are
several steps required to set up a CORBA client/server application. These steps are
listed below.

164 An Introduction to Network Programming with Java

1. Use the idlj compiler to compile the above file, generating up to
six files for each interface defined.

2. Implement each interface as a ‘servant’.
3. Create the server (incorporating servants).
4. Compile the server and the idlj-generated files.
5. Create a client.
6. Compile the client.
7. Run the application.

Simple Example

This first example application simply displays a greeting to any client that uses the
appropriate interface registered with the Java IDL ORB to invoke the associated
method implementation on the server. The steps will be numbered as above…

1. Create the IDL file.

The file will be called Hello.idl and will hold a module called
SimpleCORBAExample. This module will contain a single interface called Hello that
holds the signature for operation getGreeting. The contents of this file are shown
below.

module SimpleCORBAExample
{
 interface Hello
 {
 string getGreeting();
 };
};

2. Compile the IDL file.

The idlj compiler defaults to generating only the client-side bindings. To vary this
default behaviour, the –f option may be used. This is followed by one of three
possible specifiers: client, server and all. If client and server are to be run on the
same machine, then all is appropriate and the following command line should be
entered:

 idlj –fall Hello.idl

This causes a sub-directory with the same name as the module (i.e.,
SimpleCORBAExample) to be created, holding the six files listed below.

• Hello.java
Contains the Java version of our IDL interface. It extends interface
HelloOperations [See below], as well as org.omg.CORBA.Object (providing
standard CORBA object functionality) and
org.omg.CORBA.portable.IDLEntity.

CORBA 165

• HelloHelper.java
Provides auxiliary functionality, notably the narrow method required to cast
CORBA object references into Hello references.

• HelloHolder.java
Holds a public instance member of type Hello. If there were any out or
inout arguments (which CORBA allows, but which do not map easily onto
Java), this file would also provide operations for them.

• HelloOperations.java
Contains the Java method signatures for all operations in our IDL file. In this
application, it contains the single method getGreeting.

• _HelloImplBase.java
An abstract class comprising the server skeleton. It provides basic CORBA
functionality for the server and implements the Hello interface. Each servant
(interface implementation) that we create for this service must extend
_HelloImplBase.

• _HelloStub.java
This is the client stub, providing CORBA functionality for the client. Like
_HelloImplBase.java, it implements the Hello interface.

Prior to J2SE 1.3, the method signatures would have been specified within
Hello.java, but are now held within HelloOperations.java.

3. Implement the interface.

Here, we specify the Java implementation of our IDL interface. The implementation
of an interface is called a ‘servant’, so we shall name our implementation class
HelloServant. This class must extend _HelloImplBase. Here is the code:

class HelloServant extends _HelloImplBase
{
 public String getGreeting()
 {
 return ("Hello there!");
 }
}

This class will be placed inside the same file as our server code.

4. Create the server.

Our server program will be called HelloServer.java and will subsume the servant
created in the last step. It will reside in the directory immediately above directory
SimpleCORBAExample and will import package SimpleCORBAExample and the
following three standard CORBA packages:

• org.omg.CosNaming (for the naming service);

166 An Introduction to Network Programming with Java

• org.omg.CosNaming.NamingContextPackage (for special
exceptions thrown by the naming service);

• org.omg.CORBA (needed by all CORBA applications).

There are several steps required of the server…

(i) Create and initialise the ORB.

This is effected by calling static method init of class ORB (from package
org.omg.CORBA). This method takes two arguments: a String array and a Properties
object. The first of these is usually set to the argument list received by main, while
the second is almost invariably set to null:

 ORB orb = ORB.init(args,null);
[The argument args is not used here (or in many other such programs) in a Windows
environment, but it is simpler to supply it, since replacing it with null causes an
error message, due to ambiguity with an overloaded form of init that takes an Applet
argument and a Properties argument.]

(ii) Create a servant.

Easy enough:

 HelloServant servant = new HelloServant();

(iii) Register the servant with the ORB.

This allows the ORB to pass invocations to the servant and is achieved by means of
the ORB class’s connect method:

 orb.connect(servant);

(iv) Get a reference to the root naming context.

Method resolve_initial_references of class ORB is called with the String argument
“NameService” (defined for all CORBA ORBs) and returns a CORBA Object
reference that points to the naming context:

 org.omg.CORBA.Object objectRef =
 orb.resolve_initial_references("NameService");

(v) ‘Narrow’ the context reference.

In order for the generic Object reference from the previous step to be usable, it must
be ‘narrowed’ (i.e., typecast ‘down’ into its appropriate type). This is achieved by
the use of method narrow of class NamingContextHelper (from package
org.omg.CosNaming):

 NamingContext namingContext =
 NamingContextHelper.narrow(objectRef);

CORBA 167

(vi) Create a NameComponent object for our interface.

The NameComponent constructor takes two String arguments, the first of which
supplies a name for our service. The second argument can be used to specify a
category (usually referred to as a ‘kind’) for the first argument, but is typically left
as an empty string. In our example, the service will be called ‘Hello’:

 NameComponent nameComp =
 new NameComponent("Hello", "");

(vii) Specify the path to the interface.

This is effected by creating an array of NameComponent objects, each of which is a
component of the path (in ‘descending’ order), with the last component specifying
the name of the NameComponent reference that points to the service. For a service
in the same directory, the array will contain a single element, as shown below.

 NameComponent[] path = (nameComp};

(viii) Bind the servant to the interface path.

The rebind method of the NamingContext object created earlier is called with
arguments that specify the path and service respectively:

 namingContext.rebind(path,servant);

(ix) Wait for client calls.

Unlike our previous server programs, this is not achieved via an explicitly ‘infinite’
loop. A call is made to method wait of (Java class) Object. This call is isolated
within a code block that is declared synchronized, as shown below.

java.lang.Object syncObj = new java.lang.Object();
synchronized(syncObj)
{
 syncObj.wait();
}

All of the above code will be contained in the server’s main method. Since various
CORBA system exceptions may be generated, all the executable code will be held
within a try block.

Now for the full program…

import SimpleCORBAExample.*;

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

168 An Introduction to Network Programming with Java

public class HelloServer
{
 public static void main(String[] args)
 {
 try
 {
 ORB orb = ORB.init(args,null);

 HelloServant servant = new HelloServant();

 orb.connect(servant);

 org.omg.CORBA.Object objectRef =
 orb.resolve_initial_references("NameService");

 NamingContext namingContext =
 NamingContextHelper.narrow(objectRef);

 NameComponent nameComp =

 new NameComponent("Hello", "");

 NameComponent[] path = {nameComp};

 namingContext.rebind(path,servant);

 java.lang.Object syncObj =

 new java.lang.Object();

 synchronized(syncObj)
 {
 syncObj.wait();
 }
 }
 catch (Exception ex)
 {
 System.out.println("*** Server error! ***");
 ex.printStackTrace();
 }
 }
}

class HelloServant extends _HelloImplBase
{
 public String getGreeting()
 {
 return ("Hello there!");
 }
}

CORBA 169

5. Compile the server and the idlj-generated files.

From the directory above directory SimpleCORBAExample, execute the following
command within a command window:

 javac HelloServer.java SimpleCORBAExample*.java
(Correct errors and recompile, as necessary.)

6. Create a client.

Our client program will be called HelloClient.java and, like the server program, will
import package SimpleCORBAExample. It should also import two of the three
CORBA packages imported by the server: org.omg.CosNaming and
org.omg.CORBA. There are several steps required of the client, most of them being
identical to those required of the server, so the explanations given for the server in
step 4 above are not repeated here…

(i) Create and initialise the ORB.

 ORB orb = ORB.init(args,null);

(ii) Get a reference to the root naming context.

 org.omg.CORBA.Object objectRef =
 orb.resolve_initial_references("NameService");

(iii) ‘Narrow’ the context reference.

 NamingContext namingContext =
 NamingContextHelper.narrow(objectRef);

(iv) Create a NameComponent object for our interface.

 NameComponent nameComp =
 new NameComponent("Hello", "");

(v) Specify the path to the interface.

 NameComponent[] path = (nameComp};

(vi) Get a reference to the interface.

This is achieved by passing the above interface path to our naming context’s resolve
method, which returns a CORBA Object reference:

 org.omg.CORBA.Object objectRef =
 namingContext.resolve(path);

(vii) ‘Narrow’ the interface reference.

We ‘downcast’ the reference from the previous step into a Hello reference via static
method narrow of the idlj-generated class HelloHelper:

170 An Introduction to Network Programming with Java

 Hello helloRef = HelloHelper.narrow(objectRef);

(viii) Invoke the required method(s) and display results.

We use the reference from the preceding step to invoke the required method, just as
though the call were being made to a local object:

System.out.println("Message received: "
 + greeting);

As was the case with the server, our client may then generate CORBA system
exceptions, and so all the executable code will be placed inside a try block.

The full program is shown below.

import SimpleCORBAExample.*;

import org.omg.CosNaming.*;
import org.omg.CORBA.*;

public class HelloClient
{
 public static void main(String[] args)
 {
 try
 {
 ORB orb = ORB.init(args,null);

 org.omg.CORBA.Object objectRef =
 orb.resolve_initial_references(

 "NameService");

 NamingContext namingContext =

 NamingContextHelper.narrow(objectRef);

 NameComponent nameComp =

 new NameComponent("Hello", "");

 NameComponent[] path = {nameComp};

 //Re-use existing object reference...
 objectRef = namingContext.resolve(path);

 Hello helloRef = HelloHelper.narrow(objectRef);

 String greeting = helloRef.getGreeting();

CORBA 171

 System.out.println("Message received: "
 + greeting);
 }
 catch (Exception ex)
 {
 System.out.println("*** Client error! ***");
 ex.printStackTrace();
 }
 }
}

7. Compile the client.

From the directory above directory SimpleCORBAExample, execute the following
command:

 javac HelloClient.java

8. Run the application.

This requires three steps...

(i) Start the CORBA naming service.

This is achieved via the following command:

 tnameserv

Example output:

 Figure 6.3 Starting the CORBA naming service under Java IDL.

172 An Introduction to Network Programming with Java

The above command starts up the Java IDL Transient Nameservice as an object
server that assumes a default port of 900. To use a different port (which would
normally be necessary under Sun's Solaris operating system for ports below 1024),
use the ORBInitialPort option to specify the port number. For example:

 tnameserv -ORBInitialPort 1234

(ii) Start the server in a new command window.

For our example program, the command will be:

 java HelloServer
(Since there is no screen output from the server, no screenshot is shown here.)

Again, a port other than the default one can be specified. For example:

 java HelloServer -ORBInitialPort 1234

(iii) Start the client in a third command window.

For our example program, the command will be:

 java HelloClient
(As above, a non-default port can be specified.)

The expected output should appear in the client window, as shown in Figure 6.5.

 Figure 6.4 Output from the HelloClient CORBA program.

 The above example was deliberately chosen to be as simple as possible, since the
central objective was to familiarise the reader with the basic required process, rather
than to introduce the complexities of a realistic application. Now that this process

CORBA 173

has been covered, we can apply it to a more realistic scenario. This will be done in
the next section.

6.4 Using Factory Objects

In real-world applications, client programs often need to create CORBA objects,
rather than simply using those that have already been set up. The only way in which
this can be done is to go through a published factory object interface on the ORB.
For each type of object that needs to be created, a factory object interface must be
defined in the IDL specification (on the ORB) and implemented on the server. The
usual naming convention for such interfaces is to append the word Factory to the
name of the object type that is to be created. For example, an object of interface
Account would be created by an AccountFactory object. The AccountFactory object
will contain a creation method that allows connecting clients to create Account
objects. The name of this creation method may be anything that we wish, but it is
convenient to prepend the word 'create' onto the type of the object to be created.
Thus, the AccountFactory's creation method could meaningfully be called
createAccount. Assuming that an Account object requires only an account number
and account name at creation time, the AccountFactory interface in the IDL
specification would look something like this:

interface AccountFactory
{
 Account createAccount(in long acctNum,
 in string acctName);
};

This method's implementation will make use of the new operator to create the
Account object. Like our other interface implementations, this implementation must
extend the appropriate idlj-generated 'ImplBase' class (which, in this case, is
_AccountFactoryImplBase). Following the convention of appending the word
'Servant' to such implementations, we would name the implementation
AccountFactoryServant. Thus, the implementation would have a form similar to that
shown below.

class AccountFactoryServant
 extends _AccountFactoryImplBase
{
 public Account createAccount(int acctNum,

 String acctName)
 {
 return (new AccountServant(

 acctNum, acctName));
 }
}

174 An Introduction to Network Programming with Java

However, it would appear that we have merely moved the object creation problem
on to the factory interface. Connecting clients cannot create factory objects, so how
can they gain access to the creation methods within such objects? The simple answer
is that the server will create a factory object for each factory interface and register
that object with the ORB. Clients can then get a reference to the factory object and
use the creation method of this object to create CORBA application objects.
Assuming that a client has obtained a reference to the AccountFactory object created
by the server and that this reference is held in the variable acctFactoryRef, the client
could create an Account object with account number 12345 and account name 'John
Andrews' with the following code:

 Account acct = acctFactoryRef.createAccount(
 12345,"John Andrews");

For non-persistent objects, methods to destroy CORBA objects should also be
defined (though we shall not be doing so).

 To illustrate the use of factory interfaces and their associated factory objects, the
rest of this section will be taken up by a specific example.

Example

We shall consider how Java IDL may be used to provide platform-independent
access to stock items. Although only one item of stock will be used for illustration
purposes, this could easily be extended to as many items of stock as might be
required by a real-world application. The same basic steps will be required here as
were used in the simple CORBA application of the last section, and the same
numbering will be used here to indicate those steps.

1. Create the IDL file.

The file will be called StockItem.idl and will hold a module called Sales. This
module will contain interfaces called StockItem and StockItemFactory. The former
will hold the attributes and operations associated with an individual item of stock.
For simplicity's sake, the attributes will be stock code and current level, while the
operations will be ones to increase and decrease the stock level of this particular
stock item. Since the stock code should never be changed, it will be declared read-
only. The StockItemFactory interface will hold method createStockItem, which will
be used to create a StockItem object with specified stock code and stock level (as
indicated by the parameters of this operation). The contents of StockItem.idl are
shown below.

module Sales
{
 interface StockItem
 {
 readonly attribute string code;
 attribute long currentLevel;

CORBA 175

 long addStock(in long incNumber);
 long removeStock(in long decNumber);
 };

 interface StockItemFactory
 {
 StockItem createStockItem(in string newCode,
 in long newLevel);
 };
};

2. Compile the IDL file.

As in the previous example, client and server will be run on the same machine, so
the -f flag will be followed by all. The command to execute the idlj compiler, then,
is:

 idlj –fall StockItem.idl

This causes a sub-directory with the same name as the module (i.e., Sales) to be
created, holding the following twelve files (six each for the two interfaces):

• StockItem.java

• StockItemHelper.java

• StockItemHolder.java

• StockItemOperations.java

• _StockItemImplBase.java

• _StockItemStub.java

• StockItemFactory.java

• StockItemFactoryHelper.java

• StockItemFactoryHolder.java

• StockItemFactoryOperations.java

• _ StockItemFactoryImplBase.java

• _ StockItemFactoryStub.java

3. Implement the interfaces.

Once again, we shall follow the convention of appending the word 'servant' to each
of our interface names to form the names of the corresponding implementation
classes. This results in classes StockItemServant and StockItemFactoryServant,
which must extend classes _StockItemImplBase and _StockItemFactoryImplBase
respectively. The code is shown below. Note that both 'get' and 'set' methods for
attribute currentLevel must be supplied and must have the same name as this

176 An Introduction to Network Programming with Java

attribute, whereas only the 'get' method for the read-only attribute code must be
supplied.

class StockItemServant extends _StockItemImplBase
{
 //Declare and initialise instance variables...
 private String code = "";
 private int currentLevel = 0;

 //Constructor...
 public StockItemServant(String newCode, int newLevel)
 {
 code = newCode;
 currentLevel = newLevel;
 }

 public int addStock(int incNumber)
 {
 currentLevel += incNumber;
 return currentLevel;
 }

 public int removeStock(int decNumber)
 {
 currentLevel -= decNumber;
 return currentLevel;
 }

 //Must supply following 'get' and 'set' methods...

 //Accessor method ('get' method) for stock code...
 public String code()
 {
 return code;
 }

 //Accessor method ('get' method) for stock level...
 public int currentLevel()
 {
 return currentLevel;
 }

 //Mutator method ('set' method) for stock level...
 public void currentLevel(int newLevel)
 {
 currentLevel = newLevel;
 }

CORBA 177

}

class StockItemFactoryServant
 extends _StockItemFactoryImplBase
{
 /*
 Method to create a StockItemServant object and return
 a reference to this object (allowing clients to
 create StockItem objects from the servant)...
 */
 public StockItem createStockItem(String newCode,
 int newLevel)
 {
 return (new StockItemServant(newCode,newLevel));
 }
}
As in the first example, these classes will be placed inside the same file as our server
code.

4. Create the server.

Our server program will be called StockItemServer.java and will subsume the
servants created in the last step. It will import package Sales and (as in the previous
example) the following three standard CORBA packages:

• org.omg.CosNaming;
• org.omg.CosNaming.NamingContextPackage;
• org.omg.CORBA.

The same basic sub-steps as were featured in the previous example will again be
required, of course. Rather than reiterate these steps formally in the text, they will be
indicated by comments within the code. The additional code involves the creation of
a StockItemFactoryServant object and the associated registration of this object with
the ORB, creation of an associated NameComponent object and so forth. Once
again, comments within the code indicate the meaning of individual program lines.

import Sales.*;

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

public class StockItemServer
{
 public static void main(String[] args)
 {
 try

178 An Introduction to Network Programming with Java

 {
 //Create and initialise the ORB...
 ORB orb = ORB.init(args,null);

 //Create a StockItemServant object...
 StockItemServant stockServant =
 new StockItemServant("S0001", 100);

 //Register the object with the ORB...
 orb.connect(stockServant);

 //Create a StockItemFactoryServant object...
 StockItemFactoryServant factoryServant =
 new StockItemFactoryServant();

 //Register the object with the ORB...
 orb.connect(factoryServant);

 //Get a reference to the root naming context...
 org.omg.CORBA.Object objectRef =
 orb.resolve_initial_references("NameService");

 //'Narrow' ('downcast') context reference...
 NamingContext namingContext =
 NamingContextHelper.narrow(objectRef);

 //Create a NameComponent object for the
 //StockItem interface...
 NameComponent nameComp =
 new NameComponent("Stock", "");

 //Specify the path to the interface...
 NameComponent[] stockPath = {nameComp};

 //Bind the servant to the interface path...
 namingContext.rebind(stockPath,stockServant);

 //Create a NameComponent object for the
 //StockFactory interface...
 NameComponent factoryNameComp =
 new NameComponent("StockFactory", "");

 //Specify the path to the interface...
 NameComponent[] factoryPath =
 {factoryNameComp};

 //Bind the servant to the interface path...

CORBA 179

 namingContext.rebind(
 factoryPath,factoryServant);

 System.out.print("\nServer running...");

 java.lang.Object syncObj =
 new java.lang.Object();
 synchronized(syncObj)
 {
 syncObj.wait();
 }
 }
 catch (Exception ex)
 {
 System.out.println("*** Server error! ***");
 ex.printStackTrace();
 }
 }
}

class StockItemServant extends _StockItemImplBase
{
 //Code as shown in step 3 above.
}

class StockItemFactoryServant
 extends _StockItemFactoryImplBase
{
 //Code as shown in step 3 above.
}

5. Compile the server and the idl-generated files.

From the directory above directory Sales, execute the following command within a
command window:

 javac StockItemServer.java Sales*.java
(Correct errors and recompile, as necessary.)

6. Create a client.

Our client program will be called StockItemClient.java and, like the server program,
will import package Sales. As with the client program in the previous example, it
should also import org.omg.CosNaming and org.omg.CORBA. In addition to the
steps executed by the client in the previous example, the steps listed below will be
carried out.

180 An Introduction to Network Programming with Java

• Several method calls will be made on the (pre-existing) StockItem
object, rather than just the one made on the Hello object.

• A reference to the StockItemFactory object created and registered
by the server will be obtained.

• The above reference will be used to create a new StockItem object
by invoking method createStockItem (supplying the arguments
required by the constructor).

• Methods of the new StockItem object will be invoked, to
demonstrate once again that the object may be treated in just the
same way as a local object.

The full code is shown below, with comments indicating the purpose of each
operation.

import Sales.*;

import org.omg.CosNaming.*;
import org.omg.CORBA.*;

public class StockItemClient
{
 public static void main(String[] args)
 {
 try
 {
 //Create and initialise the ORB...
 ORB orb = ORB.init(args,null);

 //Get a reference to the root naming context...
 org.omg.CORBA.Object objectRef =
 orb.resolve_initial_references("NameService");

 //'Downcast' the context reference...
 NamingContext namingContext =
 NamingContextHelper.narrow(objectRef);

 //Create a NameComponent object for the
 //StockItem interface...
 NameComponent nameComp =
 new NameComponent("Stock", "");

 //Specify the path to the interface...
 NameComponent[] stockPath = {nameComp};

 //Get a reference to the interface (reusing
 //existing reference)...
 objectRef = namingContext.resolve(stockPath);

CORBA 181

 //'Downcast' the reference...
 StockItem stockRef1 =
 StockItemHelper.narrow(objectRef);

 //Now use this reference to call methods of the
 //StockItem object...
 System.out.println("\nStock code: "
 + stockRef1.code());
 System.out.println("Current level: "
 + stockRef1.currentLevel());
 stockRef1.addStock(58);
 System.out.println("\nNew level: "
 + stockRef1.currentLevel());

 //Create a NameComponent object for the
 //StockFactory interface...
 NameComponent factoryNameComp =
 new NameComponent("StockFactory", "");

 //Specify the path to the interface...
 NameComponent[] factoryPath =
 {factoryNameComp};

 //Get a reference to the interface (reusing
 //existing reference)...
 objectRef = namingContext.resolve(factoryPath);

 //'Downcast' the reference...
 StockItemFactory stockFactoryRef =
 StockItemFactoryHelper.narrow(objectRef);

 /*
 Use factory reference to create a StockItem
 object on the server and return a reference to
 this StockItem (using method createStockItem
 within the StockItemFactory interface)...
 */
 StockItem stockRef2 =
 stockFactoryRef.createStockItem("S0002",200);

 //Now use this reference to call methods of the
 //new StockItem object...
 System.out.println("\nStock code: "
 + stockRef2.code());
 System.out.println("Current level: "
 + stockRef2.currentLevel());
 }

182 An Introduction to Network Programming with Java

 catch (Exception ex)
 {
 System.out.println("*** Client error! ***");
 ex.printStackTrace();
 }
 }
}

7. Compile the client.

From the directory above directory Sales, execute the following command:

 javac StockItemClient.java

8. Run the application.

As before, this requires three steps...

(i) Start the CORBA naming service (unless it is already running).

Enter the following command:

 tnameserv

Output should be as shown in Figure 6.3.
N.B. Attempting to start (another instance of) the naming service when it is already
running will generate an error message!

 (ii) Start the server in a new command window.

The command for the current application will be:

 java StockItemServer

Output should be as shown in Figure 6.5.

(iii) Start the client in a third command window.

The command for this application will be:

 java StockItemClient

The expected output should appear in the client window, as shown in Figure 6.6.

 The examples in this section and in the previous section have (for convenience)
made use of localhost to run all the components associated with a CORBA
application on the same machine. However, this need not have been the case. The
ORB, nameserver and object server program could have been started on one host,
whilst the client (or clients) could have been started on a different host (or hosts).
Each client would then have needed to use the command line option -

CORBA 183

ORBInitialHost to specify the host machine for the ORB (and, if appropriate,
the command line option -ORBInitialPort to specify the port).

 Figure 6.5 Output from the StockItemServer program.

 Figure 6.6 Output from the StockItemClient program.

184 An Introduction to Network Programming with Java

6.5 Object Persistence

In commercial ORBs, object references persist. They can be saved by clients as
strings and subsequently be recreated from those strings. The methods required to
perform these operations are object_to_string and string_to_object respectively,
both of which are methods of class Orb. With the latter method, an object of
(CORBA) class Object is returned, which must then be 'downcast' into the original
class via method narrow of the appropriate 'helper' class.

Example

Suppose that we have a reference to a StockItem object and that this reference is
called itemRef. Suppose also that the ORB on which the object is registered is
identified by the variable orb. The following Java statement would store this
reference in a String object called stockItemString:

 String stockItemString =
 orb.object_to_string(itemRef);

The following statements could subsequently be used to convert this string back into
a StockItem object reference:

 org.omg.CORBA.Object obj =
 orb.string_to_object(stockItemString);
 StockItem itemRef = StockItemHelper.narrow(obj);

Of course, the client would have needed to save the original string in some persistent
form (probably within a disc file).
 Since Java IDL supports transient objects only (i.e., objects that disappear when
the server process closes down), the above technique is not possible. However, it is
possible to implement an object so that it stores its state in a disc file, which may
subsequently be used by the object's creation method to re-initialise the object.

6.6 RMI-IIOP

In order to overcome the language-specific disadvantages of RMI when compared
with CORBA, Sun and IBM came together to produce RMI-IIOP (Remote Method
Invocation over Internet Inter-Orb Protocol), which combines the best features of
RMI with the best features of CORBA. Using IIOP as the transport mechanism,
RMI-IIOP implements OMG standards to enable application components running on
a Java platform to communicate with components written in a variety of languages
(and vice-versa) ⎯ but only if all the remote interfaces are originally defined as
Java RMI interfaces. RMI-IIOP was first released in June of 1999 and is an integral
part of the J2SE from version 1.3 onwards. It is intended to be used by software
developers who program objects in Java and wish to use RMI interfaces (written in
Java) to communicate with CORBA objects written in other languages. It is of

CORBA 185

particular interest to programmers using Enterprise JavaBeans [See Chapter 11],
since the remote object model for EJBs is RMI-based. Using RMI-IIOP, objects can
be passed both by reference and by value over IIOP. The specific implementation
details of RMI-IIOP are outside the scope of this text, but the interested reader is
referred to the following URL as a source of further information:
http://java.sun.com/products/rmi-iiop.

186 An Introduction to Network Programming with Java

Exercises

6.1 Create a CORBA client/server application that handles student examination
results as objects of class Result. This class is to have instance variables studID
(holding an individual student's identity number as a Java long) and mark
(holding the student's examination result as an integer 0-100). The former
should be read-only, while the latter should allow read/write access. Have the
server register an object of class ResultFactoryServant with the ORB and have
the client use this factory object to create an array of five Result objects
(supplying the constructor for each with appropriate data). Use a display routine
to display a table of results on the client. Then use the 'set' method for the mark
attribute to change a couple of the marks and re-display the table of results.

 (You should be able to use the client and server programs for the StockItem
example as a basis for your application.)

6.2 This exercise is a fairly lengthy one that implements the bank example from the
preceding chapter and should allow you to compare the CORBA
implementation with the corresponding RMI implementation (referring to
Method 1 from the preceding chapter, rather than Method 2). The IDL code for
this application is supplied and is shown below. Note, in particular, that there is
no direct equivalent of the Vector class in IDL, so a new type has been created
via typedef:

 typedef sequence<Account> BankAccts;

Thus, a BankAccts object is effectively an array of Account objects that is of
indeterminate size.

In implementing the server, you should follow the advice given below.

• Create an AccountFactoryServant object and a
BankFactoryServant object, but do not register these with the
ORB, since clients will not need to use them.

• Declare and initialise three parallel arrays to hold the data for
bank customers (surnames, first names and balances).

• Create an array of Account objects and use the createAccount
method of the AccountFactoryServant object to create the
members of this array, employing the data from the above three
arrays in the construction of these members.

• Create a BankServant object, passing the above array to the
constructor for this object, and register the object with the ORB.

In implementing the client, you should follow the advice given below.

• Use the above BankServant object to create a Bank reference.
• Retrieve the BankAccts attribute of this Bank reference (as an

array of Account objects).

CORBA 187

• Use the methods of class Account to display the contents of
these Account objects.

module BankApp
{
 interface Account
 {
 readonly attribute long acctNum;
 attribute string surname;
 readonly attribute string firstNames;
 attribute double balance;

 string getName();
 double withdraw(in double amount);
 void deposit(in double amount);
 };

 interface AccountFactory
 {
 Account createAccount(in long newAcctNum,
 in string newSurname,
 in string newFirstNames,
 in double newBalance);
 };

 typedef sequence<Account> BankAccts;

 interface Bank
 {
 attribute BankAccts accounts;
 };

 interface BankFactory
 {
 Bank createBank(in BankAccts newAccounts);
 };
};

7 Java Database Connectivity (JDBC)

Learning Objectives
After reading this chapter, you should:

• be aware of what JDBC is and why it is needed;
• be aware of the differing versions of JDBC that are associated with

the differing versions of Java;
• know how to use JDBC to make a connection to a database by

employing Java's DriverManager class;
• know how to make use of the JDBC-ODBC bridge driver;
• know how to use JDBC to execute SQL queries and updates and

how to handle the results returned;
• know how to carry out transaction processing via JDBC;
• know how to use JDBC to find out structural information about

databases;
• know how to make use of a JTable to format the results of a

database query;
• know how to use JDBC 2.0 to move freely around the rows

returned by a query;
• know how to use JDBC 2.0 to modify databases via Java methods;
• know how to use JDBC to make a connection to a database by

employing Java's DataSource interface;
• be aware of the advantages that the use of the DataSource

interface has over the use of the DriverManager class.

The previous three chapters employed individual, ‘flat’ files to provide persistent
data storage. Nowadays, of course, most organisations have the bulk of their data
structured into databases, which often need to be accessed from more than one site.
These databases are almost invariably relational databases. Programs written in
Java are able to communicate with relational databases (whether local or remote) via
the Java Database Connectivity (JDBC) API, which became part of the core Java
distribution with JDK 1.1. In this chapter, we shall consider how such remote
databases may be accessed via JDBC.

7.1 The Vendor Variation Problem

A fundamental problem that immediately presents itself when attempting to provide
some general access method that will work for all relational databases is how to
cope with the variation in internal format of such databases (and, consequently, the
associated database API) from vendor to vendor. Thus, for example, the internal

Java Database Connectivity 189

format of an Oracle database will be different from that of an Access database, while
the format of a MySQL database will be different from both of these.

In order to use JDBC for the accessing of data from a particular type of relational
database, it is necessary to provide some mediating software that will allow JDBC to
communicate with the vendor-specific API for that database. Such software is
referred to as a driver. Suitable drivers are usually supplied either by the database
vendors themselves or by third parties. For information about JDBC drivers for
specific databases, visit http://servlet.java.sun.com/products/jdbc/drivers. These
drivers may be written purely in Java or in a combination of Java and Java Native
Interface (JNI) methods. (JNI allows Java programmers to make use of code written
in other programming languages.) However, the details are beyond the scope of this
text and no further reference will be made to these differing categories.
 Before Java came onto the scene, Microsoft had introduced its own solution to the
problem of accessing databases that have different internal formats: Open Database
Connectivity (ODBC). Though (not surprisingly) ODBC drivers were originally
available only for Microsoft (MS) databases, other vendors and third party suppliers
have since brought out ODBC drivers for most of the major non-MS databases. In
recognition of this fact, Sun provides the JDBC-ODBC bridge driver in package
sun.jdbc.odbc, which is included in the J2SE (and has been present in Java from
JDK 1.1). This driver converts the JDBC protocol into the corresponding ODBC one
and allows Java programmers to access databases for which there are ODBC drivers.
However, adding an extra conversion phase may lead to unacceptably long delays in
some large, database-intensive applications. In fact, to quote from the Sun site,
“…the bridge driver included in the SDK is appropriate only for experimental use or
when no other driver is available”.

7.2 SQL and Versions of JDBC

The standard means of accessing a relational database is to use SQL (Structured
Query Language). [Readers unfamiliar with SQL are advised to read the appendix
on this subject before proceeding further with this chapter.] This is reflected in the
fact that the package comprising the core JDBC API is called java.sql.
 The original JDBC that was released with JDK 1.1 was JDBC 1.0, and this is still
the version of JDBC for which many existing drivers are written, though these are
now in the minority. When JDK 1.2 (J2SE 1.2) came out, it incorporated JDBC 2.0,
which introduced several new features, such as scrolling forwards and backwards in
a result set and making updates to database tables using Java methods (instead of
SQL commands). With the emergence of J2SE 1.2.2 came JDBC 2.1, which was
carried over into J2SE 1.3. In addition to some extra functionality provided by
JDBC 2.1, an optional download was made available for Java programmers wishing
to carry out server-side database manipulation (such as that which is often involved
with Enterprise JavaBeans). This optional package is variously identified by the
following slightly differing names, depending upon which part of the Sun site is
accessed (!): JDBC 2.0 Optional Package API; JDBC 2.0 Extension Package API;
JDBC 2.0 Standard Extension API. This API is contained within the Java package
javax.sql.

190 An Introduction to Network Programming with Java

 The latest current version of the JDBC API is JDBC 3.0 (released on 13th Feb
2002). Using this API, it is possible to access data not only from relational
databases, but also from spreadsheets and flat files i.e., from just about any data
source. JDBC 3.0 comprises the two packages java.sql and javax.sql, and was
included in J2SE 1.4. Probably the two most important features introduced in JDBC
3.0 are connection pooling and savepoints. The former allows an application server
to maintain a set or 'pool' of open connections, which are made available to
connecting clients and save the time involved in creating new connections. The
Savepoint interface allows the programmer to partition a transaction into logical
breakpoints, providing control over how much of a transaction gets rolled back.
 Though these new features are of particular importance to J2EE programmers,
they are also of use to J2SE programmers. One of the guiding design principles of
the JDBC 3.0 specification was to maintain compatibility with existing applications
and drivers. Consequently, users of JDBC 2 can expect their applications to function
correctly under JDBC 3. In addition, code written to the JDBC 1 API that uses
deprecated methods will continue to work under JDBC 3. In the meantime, JDBC 4
is under development at the time of writing and is expected to be included in J2SE 6,
the release of which is expected at about the time of publication of this text.

The most commonly used version of JDBC is currently JDBC 2, though there are
still plenty of JDBC 1 drivers around, as well as an increasing number of JDBC 3
drivers. The total number of drivers at the URL given in the previous section
(http://servlet.java.sun.com/products/jdbc/drivers) at the time of writing is 220. Of
these, 83 are JDBC 1 drivers, 104 are JDBC 2 drivers and 33 are JDBC 3 drivers.
Since many drivers are still based upon JDBC 1, the next few sections will refer to
this version of the API, but later sections will refer to features of JDBC 2 and of
JDBC 3.
 In the examples that follow in the next few sections, a simple MS Access database
will be used for purposes of illustration, which means that the inbuilt JDBC-ODBC
bridge driver can be employed (even though, as noted at the end of 7.1, this may not
be the best strategy in many commercial applications). Convenient though this may
be in view of the widespread use and availability of MS Access and the inclusion of
the JDBC-ODBC bridge driver in the J2SE, it does introduce a complication: we
have to create an ODBC Data Source. The next section describes the process
required to do this. Before starting this section, though, it is worth mentioning that
the reader who wishes to experiment with other databases (such as Oracle or
MySQL) will probably find it necessary to place the appropriate JDBC driver within
folder J2SE5.0\jre\lib\ext. (This was certainly the author's experience, at any rate.)

7.3 Creating an ODBC Data Source

Before an ODBC-driven database can be accessed via a Java program, it is
necessary to register the database as an ODBC Data Source. Once this has been
done, the database can be referred to by its Data Source Name (DSN). Assuming
that the database has already been created, the steps required to set up your own
ODBC Data Source are shown below. (These instructions were used on a Windows

Java Database Connectivity 191

XP machine and the naming of some items may vary slightly with other MS
operating systems, but the basic steps should remain much the same.)

1. Using the mouse, select Start Control Panel from the startup menu.
2. Double-click Administrative Tools.
3. Double-click Data Sources (ODBC) to display the ODBC Data Source

Administrator window.
4. Ensure that the User DSN tab is selected.
5. Click on the Add... button to display the Create New Data Source

window.
6. Select Microsoft Access Driver (*.mdb) and click on Finish.
7. To locate the required database within the directory structure, click on the

Select... button.
8. Navigate the directory structure and select the required database.
9. Supply a (meaningful) name for the data source. (The 'Description' field is

optional.)
10. If specifying a username and password (not mandatory and not necessary

for the examples in this section), select Advanced Options and then key in
the values, clicking on OK when finished.

11. Click on OK to finish registration.

N.B. Remember that the above procedure is required only for ODBC databases!

The next section describes how our Java code can make use of the database's DSN
to retrieve data from the database.

7.4 Simple Database Access

In what follows, reference will be made to Connection, Statement and ResultSet
objects. These three names actually refer to interfaces, rather than classes, so it is
probably not strictly correct to refer to objects of these interfaces. However, each
JDBC driver must implement these three interfaces and the implementation classes
may then be used to create objects that may conveniently be referred to as
Connection, Statement and ResultSet objects respectively. Similar comments apply
to interfaces ResultSetMetaData and DatabaseMetaData in section 7.7. From now
on, such terminology will be used freely and this point will not be laboured any
further.

Using JDBC to access a database requires several steps, as described below.

1. Load the database driver.
2. Establish a connection to the database.
3. Use the connection to create a Statement object and store a reference to

this object.
4. Use the above Statement reference to run a specific query or update

statement and accept the result(s).

192 An Introduction to Network Programming with Java

5. Manipulate and display the results (if a query) or check/show number of
database rows affected (for an update).

6. Repeat steps 4 and 5 as many times as required for further
queries/updates.

7. Close the connection.

For purposes of illustration, we shall assume the existence of an MS Access
database called Finances.mdb that holds a single table called Accounts. The structure
of this simple table is as shown below.

Field Name MS Access Type Java Type

acctNum Number int
surname Text String
firstNames Text String
balance Currency float

We shall further assume that the DSN given to the database is Finances.

Let's take each of the above seven steps in turn for this database...

1. Load the Database Driver

This is achieved via static method forName of class Class(!):

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
[Just in passing, it’s worth commenting upon the poor naming of method forName,
which exhibits no discernible connection between its name and its purpose! This is
highly unusual within the standard Java libraries, which are almost invariably
exemplars of good naming practice. The naming of class Class also appears to be
rather poor at first glance, but this class is used to hold methods that operate upon
other classes in order to furnish details of their characteristics.]

2. Establish a Connection to the Database

We declare a Connection reference and call static method getConnection of class
DriverManager to return a Connection object for this reference. Method
getConnection takes three String arguments:

• a URL-style address for the database;
• a user name;
• a password.

The JDBC API specification recommends that the database address have the
following format:

 jdbc:<sub-protocol>:<data-source>

Java Database Connectivity 193

Here, <sub-protocol> specifies a database connection service (i.e., a driver)
and <data-source> provides all the information needed by the service to locate
the database (typically, the URL path to the database). For a local ODBC database
with data source name Finances, the sub-protocol is odbc and the final part of the
address is simply the name of the data source:

 jdbc:odbc:Finances

Assuming that our Finances database is indeed local and that we did not set a user
name or password for this database, the line required to open a connection to the
database would be similar to this:

 Connection link =
 DriverManager.getConnection(
 "jdbc:odbc:Finances", "", "");

If this same database were remote, then the above line would look something like
this:

Connection link =
 DriverManager.getConnection(
 "jdbc:odbc://AnyServer.SomethingElse.com/Finances",
 "", "");

 However, the API-specified syntax is only a recommendation and database
vendors are free to ignore this if they wish. Consequently, some drivers may specify
sub-protocols and data sources with syntax that is different from that shown above.
It is up to the DriverManager to query each loaded driver in turn to determine
whether the driver recognises the type of database that is being addressed.

3. Create a Statement Object and Store its Reference

A Statement object is created by calling the createStatement method of our
Connection object (whose reference was saved in variable link in the previous step).
The address of the object returned by this call to createStatement is saved in a
Statement reference. In the line below, this reference is simply called statement.

 Statement statement = link.createStatement();

4. Run a Query/Update and Accept the Result(s)

DML (Data Manipulation Language) statements in SQL may be divided into two
categories: those that retrieve data from a database (i.e., SELECT statements) and
those that change the contents of the database in some way (viz., INSERT, DELETE
and UPDATE statements). Class Statement has methods executeQuery and
executeUpdate that are used to execute these two categories respectively. The
former method returns a ResultSet object, while the latter returns an integer that
indicates the number of database rows that have been affected by the updating

194 An Introduction to Network Programming with Java

operation. (We shall postpone consideration of method executeUpdate until the next
section.)

It is common practice to store the SQL query in a String variable and then invoke
executeQuery with this string as an argument, in order to avoid a rather cumbersome
invocation line. This practice has been followed in the examples below.

Examples

 (i) String selectAll = "SELECT * FROM Accounts";
 ResultSet results =
 statement.executeQuery(selectAll);

 (ii) String selectFields =
 "SELECT acctNum, balance FROM Accounts";
 ResultSet results =
 statement.executeQuery(selectFields);

 (iii) String selectRange = "SELECT * FROM Accounts"
 + " WHERE balance >= 0"
 + " AND balance <= 1000"
 + " ORDER BY balance DESC";
 ResultSet results =
 statement.executeQuery(selectRange);

 (iv) String selectNames =
 "SELECT * FROM Accounts WHERE surname < Jones'";
 ResultSet results =
 statement.executeQuery(selectNames);

Note the need for inverted commas around any string literals! (Speech marks cannot
be used, of course, since the opening of speech marks for a string within an SQL
query would be interpreted by the compiler as the closing of the query.) Inverted
commas are not required for numbers, but no error is generated if they are used.

5. Manipulate/Display/Check Result(s)

The ResultSet object returned in response to a call of executeQuery contains the
database rows that satisfy the query's search criteria. The ResultSet interface
contains a very large number of methods for manipulating these rows, but the
majority of these first appeared in JDBC 2.0 and will not be discussed here. [See
section 7.9 for coverage of some of the other methods.] The only method that we
need to make use of at present is next, which moves the ResultSet cursor/pointer to
the next row in the set of rows referred to by that object.

Having moved to the particular row of interest via any of the above methods, we
can retrieve data via either the field name or the field position. In doing so, we must
use the appropriate getXXX method (where 'XXX' is replaced by the appropriate
Java type).

Examples
• int getInt (String <columnName>)

Java Database Connectivity 195

• int getInt (int <columnIndex>)
• String getString (String <columnName>)
• String getString (int <columnIndex>)

Similar methods exist for the other types, in particular getFloat, getLong and
getDate. Note that the last of these is a method of class java.sql.Date, not of class
java.util.Date. The latter is, in fact, a subclass of the former. Note also that the
number of a field is its position within a ResultSet row, not its position within a
database row. Of course, if all fields of the database table have been selected by the
query, then these two will be the same. However, if only a subset of the fields has
been selected, they will not necessarily be the same!

Initially, the ResultSet cursor/pointer is positioned before the first row of the
query results, so method next must be called before attempting to access the results.
Such rows are commonly processed via a while loop that checks the Boolean
return value of this method first (to determine whether there is any data at the
selected position).

Example

String select = "SELECT * FROM Accounts";
ResultSet results =
 statement.executeQuery(select);
while (results.next())
{
 System.out.println("Account no."
 + results.getInt(1));
 System.out.println("Account holder: "
 + results.getString(3)
 + " "
 + results.getString(2));
 System.out.println("Balance: "
 + results.getFloat(4));
 System.out.println ();
}

N.B. Column/field numbers start at 1, not 0!

Alternatively, column/field names can be used. For example:

System.out.println("Account no."
 + results.getInt("acctNum");

6. Repeat Steps 4 and 5 as Required
The Statement reference may be used to execute other queries (and updates).

7. Close the Connection

This is achieved by calling method close of our Connection object and should be
carried out as soon as the processing of the database has finished. For example:

196 An Introduction to Network Programming with Java

 link.close();

Statement objects may also be closed explicitly via the identically-named method of
our Statement object. For example:

 statement.close();

 We are now almost ready to write our first database access program in Java.
Before we do, though, there is one last issue to consider: exception-handling. Any of
our SQL statements may generate an SQLException, which is a checked exception,
so we must either handle such an exception or throw it. In addition, a
ClassNotFoundException will be generated if the database driver cannot be
found/loaded. This exception must also be either handled or thrown by our code.
 Now let's bring everything together into a program that simply accesses our
Finances database and displays the full contents of the Accounts table. In order to
make use of JDBC (without cumbersome package references), of course, our
program should import java.sql. In what follows, the lines corresponding to the
above seven steps have been commented to indicate the relevant step numbers.

Example

import java.sql.*;

public class JDBCSelect
{
 private static Connection link;
 private static Statement statement;
 private static ResultSet results;
 //Alternatively, the above 3 variables may
 //be declared non-static within main, but
 //must then be initialised explicitly to null.

 public static void main(String[] args)
 {
 try
 {
 //Step 1...
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 //Step 2...
 link = DriverManager.getConnection(
 "jdbc:odbc:Finances","","");

 }
 catch(ClassNotFoundException cnfEx)
 {
 System.out.println(

Java Database Connectivity 197

 "* Unable to load driver! *");
 System.exit(1);
 }
 //For any of a number of reasons, it may not be
 //possible to establish a connection...
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Cannot connect to database! *");
 System.exit(1);
 }

 try
 {
 //Step 3...
 statement = link.createStatement();

 String select = "SELECT * FROM Accounts";
 //Step 4...
 results = statement.executeQuery(select);
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Cannot execute query! *");
 sqlEx.printStackTrace();
 System.exit(1);
 }

 try
 {
 System.out.println();

 //Step 5...
 while (results.next())
 {
 System.out.println("Account no. "
 + results.getInt(1));

 System.out.println("Account holder: "
 + results.getString(3)
 + " "
 + results.getString(2));
 System.out.printf("Balance: %.2f %n%n"
 + results.getFloat(4));
 }
 }
 catch(SQLException sqlEx)

198 An Introduction to Network Programming with Java

 {
 System.out.println(
 "* Error retrieving data! *");
 sqlEx.printStackTrace();
 System.exit(1);
 }

 //(No further queries, so no Step 6!)

 try
 {
 //Step 7...
 link.close();
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Unable to disconnect! *");
 sqlEx.printStackTrace();
 System.exit(1);
 }
 }
}

 Alternatively, we could put everything following the initial loading of the JDBC
driver (and the associated ClassNotFoundException handler) into a single try block
that is followed by code that handles all SQLExceptions. However, we would not
then be able to give specific SQL error messages.
 The output from this program when executed for an Accounts table that holds just
three rows of data will be similar to that shown below.

Figure 7.1 Output from program JDBCSelect.

Java Database Connectivity 199

7.5 Modifying the Database Contents

As mentioned in section 7.4, DML (Data Manipulation Language) statements in
SQL may be divided into two categories: those that retrieve data from a database
(SELECT statements) and those that change the contents of the database in some
way (INSERT, DELETE and UPDATE statements). So far, we have dealt only with
the former, which has meant submitting our SQL statements via the executeQuery
method. We shall now look at the latter category, for which we shall have to submit
our SQL statements via the executeUpdate method. Some examples are shown
below.

Examples

(i) String insert = "INSERT INTO Accounts"
 + " VALUES (123456,'Smith',"
 + "'John James',752.85)";
 int result = statement.executeUpdate(insert);

(ii) String change = "UPDATE Accounts"
 + " SET surname = 'Bloggs',"
 + "firstNames = 'Fred Joseph'"
 + " WHERE acctNum = 123456";
 statement.executeUpdate(change);

(ii) String remove = "DELETE FROM Accounts"
 + " WHERE balance < 100";
 result = statement.executeUpdate(remove);

For the second of these examples, the value returned by executeUpdate has not been
saved and is simply discarded by the runtime system. In practice, though, the integer
returned is often used to check whether the update has been carried out.

Example

int result = statement.executeUpdate(insert);
if (result==0)
 System.out.println("* Insertion failed! *");

As a simple illustration of database modifications in action, the next example is an
extension of our earlier example (JDBCSelect).

Example

After displaying the initial contents of the database, this example executes the SQL
statements shown in examples (i)-(iii) above and then displays the modified
database. This time, a single try block is used to surround all code after the loading
of the JDBC driver. This makes the code somewhat less cumbersome, but (as noted

200 An Introduction to Network Programming with Java

at the end of the last example) does not allow us to display problem-specific SQL
error messages. The only other change to the code is the introduction of method
displayTable, which encapsulates the selection and display of all data from the table
(in order to avoid code duplication).

import java.sql.*;

public class JDBCChange
{
 private static Connection link;
 private static Statement statement;
 private static ResultSet results;
 //Alternatively, the above 3 variables may
 //be declared non-static within main, but
 //must then be initialised explicitly to null.

 public static void main(String[] args)
 {
 try
 {
 //Step 1...
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 //Step 2...
 link = DriverManager.getConnection(
 "jdbc:odbc:Finances","","");

 }
 catch(ClassNotFoundException cnfEx)
 {
 System.out.println(
 "* Unable to load driver! *");
 System.exit(1);
 }
 //For any of a number of reasons, it may not be
 //possible to establish a connection...

 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Cannot connect to database! *");
 System.exit(1);
 }

 try
 {
 //Step 3...
 statement = link.createStatement();

Java Database Connectivity 201

 System.out.println(
 "\nInitial contents of table:");
 //Steps 4 and 5...
 displayTable();

 //Start of step 6...
 String insert = "INSERT INTO Accounts"
 + " VALUES (123456,'Smith',"
 + "'John James',752.85)";
 int result = statement.executeUpdate(insert);
 if (result == 0)
 System.out.println(
 "\nUnable to insert record!");

 String change = "UPDATE Accounts"
 + " SET surname = 'Bloggs',"
 + "firstNames = 'Fred Joseph'"
 + " WHERE acctNum = 123456";
 result = statement.executeUpdate(change);
 if (result == 0)
 System.out.println(
 "\nUnable to update record!");

 String remove = "DELETE FROM Accounts"
 + " WHERE balance < 100";
 result = statement.executeUpdate(remove);
 if (result == 0)
 System.out.println(
 "\nUnable to delete record!");

 System.out.println(
 "\nNew contents of table:");
 displayTable();
 //End of step 6.

 //Step 7...
 link.close();
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* SQL or connection error! *");
 sqlEx.printStackTrace();
 System.exit(1);
 }
 }

202 An Introduction to Network Programming with Java

 public static void displayTable() throws SQLException
 {
 String select = "SELECT * FROM Accounts";

 results = statement.executeQuery(select);

 System.out.println();

 while (results.next())
 {
 System.out.println("Account no. "
 + results.getInt(1));

 System.out.println("Account holder: "
 + results.getString(3)
 + " " + results.getString(2));
 System.out.printf("Balance: %.2f %n%n",
 results.getFloat(4));
 }
 }
}

The output from this program is shown in Figure 7.2.

 Figure 7.2 Output from program JDBCChange.

Java Database Connectivity 203

7.6 Transactions

Industrial-strength databases (so not MS Access!) will normally incorporate
transaction processing. A transaction is one or more SQL statements that may be
grouped together as a single processing entity. This feature caters for situations in
which a group of related statements needs to be carried out at the same time. If only
some of the statements are executed, then the database is likely to be left in an
inconsistent state. For example, an online ordering system may update the Orders
table when a customer places an order and may also need to update the Stock table at
the same time (in order to reflect the fact that stock has been set aside for the
customer and cannot be ordered by another customer). In such a situation, we want
either both statements or neither to be executed. Unfortunately, network problems
may cause one of these statements to fail after the other has been executed. If this
happens, then we want to undo the statement that has been executed.
 The SQL statements used to implement transaction processing are COMMIT and
ROLLBACK, which are mirrored in Java by the Connection interface methods
commit and rollback. As their names imply, commit is used at the end of a
transaction to commit/finalise the database changes, while rollback is used (in an
error situation) to restore the database to the state it was in prior to the current
transaction (by undoing any statements that may have been executed). By default,
however, JDBC automatically commits each individual SQL statement that is
applied to a database. In order to change this default behaviour so that transaction
processing may be carried out, we must first execute Connection method
setAutoCommit with an argument of false (to switch off auto-commit). We can
then use methods commit and rollback to effect transaction processing.

Example

..............................
link.setAutoCommit(false);
..............................
try
{
 //Assumes existence of 3 SQL update strings
 //called update1, update2 and update3.
 statement.executeUpdate(update1);
 statement.executeUpdate(update2);
 statement.executeUpdate(update3);
 link.commit();
}
catch(SQLException sqlEx)
{
 link.rollback();
 System.out.println(
 "* SQL error! Changes aborted... *");
}
..............................

204 An Introduction to Network Programming with Java

7.7 Meta Data

Meta data is 'data about data'. There are two categories of meta data available
through the JDBC API:

• data about the rows and columns returned by a query (i.e., data
about ResultSet objects);

• data about the database as a whole.

The first of these is provided by interface ResultSetMetaData, an object of which is
returned by the ResultSet method getMetaData. Information available from a
ResultSetMetaData object includes the following:

• the number of fields/columns in a ResultSet object;
• the name of a specified field;
• the data type of a field;
• the maximum width of a field;
• the table to which a field belongs.

Data about the database as a whole is provided by interface DatabaseMetaData, an
object of which is returned by the Connection method getMetaData. However, most
Java developers will rarely find a need for DatabaseMetaData and no further
mention will be made of it.

Before proceeding further, it is worth pointing out that the full range of SQL types
is represented in class java.sql.Types as a series of 28 named static integer (int)
constants. The 8 that are likely to be of most use are listed below.

• DATE
• DECIMAL
• DOUBLE
• FLOAT
• INTEGER
• NUMERIC
• REAL
• VARCHAR

INTEGER and VARCHAR are particularly commonplace, the latter of these
corresponding to string values.

 The example coming up makes use of the following ResultSetMetaData methods,
which return properties of the database fields held in a ResultSetMetaData object.

• int getColumnCount()
• String getColumnName(<colNumber>)
• int getColumnType(<colNumber>)
• String getColumnTypeName(<colNumber>)

Java Database Connectivity 205

The basic purpose of each of these methods is fairly self-evident, but the distinction
between the last two is worth clarifying. Method getColumnType returns the selected
field's SQL type as an integer matching one of the named constants in class
java.sql.Types, while method getColumnTypeName returns the string holding the
database-specific type name for the selected field. Now for the example...

Example

This example uses the Accounts table in our Finances database to retrieve all data
relating to account number 12345. It then uses the above methods to display the
name of each field, its database-specific type name and the value held (after
ascertaining the field's data type, so that the appropriate Java getXXX method can be
called).

import java.sql.*;

public class JDBCMetaData
{
 private static Connection link;
 private static Statement statement;
 private static ResultSet results;

 public static void main(String[] args)
 {
 try
 {
 //Step 1...
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 //Step 2...
 link = DriverManager.getConnection(
 "jdbc:odbc:Finances","","");

 }
 catch(ClassNotFoundException cnfEx)
 {
 System.out.println(
 "* Unable to load driver! *");
 System.exit(1);
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Cannot connect to database! *");
 System.exit(1);
 }

206 An Introduction to Network Programming with Java

 try
 {
 //Step 3...
 statement = link.createStatement();

 String select = "SELECT * FROM Accounts"
 + " WHERE acctNum = 123456";
 //Step 4...
 results = statement.executeQuery(select);

 //Start of step 5...
 ResultSetMetaData metaData =
 results.getMetaData();
 int numFields = metaData.getColumnCount();

 //Check that record has been found...
 boolean found = results.next();

 if (!found)
 {
 //No point in continuing...
 System.out.println("\nNot found!");
 link.close();
 return;
 }

 //Cycle through the database fields, displaying
 //meta data about each one...
 for (int i=1; i<=numFields; i++)
 //N.B. Remember that count must start at 1!
 {
 System.out.println("\nField name: "
 + metaData.getColumnName(i));

 System.out.println("Field type: "
 + metaData.getColumnTypeName(i));

 int colType = metaData.getColumnType(i);

 System.out.print("Value: ");

 //Select the appropriate getXXX method,
 //according to the SQL type of the field...
 switch (colType)
 {
 case Types.INTEGER:
 System.out.println(
 results.getInt(i));

Java Database Connectivity 207

 break;
 case Types.VARCHAR:
 System.out.println(
 results.getString(i));
 break;
 case Types.NUMERIC:
 System.out.printf("%.2f %n%n",
 results.getFloat(i));
 break;
 default: System.out.println("Unknown");
 }
 }
 //End of step 5.

 //(No further queries, so no Step 6!)

 //Step 7...
 link.close();
 }
 catch(SQLException ex)
 {
 System.out.println(
 "* SQL or connection error! *");
 ex.printStackTrace();
 System.exit(1);
 }
 }
}

 The output from this program is shown in Figure 7.3. The only features of note
concern the balance field. The MS Access-specific type for this field is
CURRENCY, its SQL type is represented in Java by the integer constant NUMERIC
and the value in this field has to be retrieved via method getFloat!

7.8 Using a GUI to Access a Database

All the programs in this chapter up to this point have been executed in command
windows, with the values retrieved from the database being displayed in a rather
primitive manner. Nowadays, of course we would expect such data to be displayed
in tabular format, using a professional-looking GUI. This can be achieved in Java
with very little extra code by making use of class JTable, which, as its name
indicates, is one of the Swing classes. An object of this class displays data in a table
format with column headings. The class has seven constructors, but we shall be
concerned with only one of these, the one that has the following signature:

 JTable(Vector <rowData>, Vector <colNames>)

208 An Introduction to Network Programming with Java

The first argument holds the rows that are to be displayed (as a Vector of Vectors),
while the second holds the names of the column headings. Since each row contains
data of differing types, each of the 'inner' Vectors within our Vector of Vectors will
need to be a heterogeneous Vector. That is to say, it will need to be of type
Vector<Object>. This means that the full type for our Vector of Vectors will have
the following rather unusual appearance: Vector<Vector<Object>>. The Vector
holding the headings will, of course, have type Vector<String>.

Figure 7.3 Output from program JDBCMetaData.

 To allow for scrolling of the rows in the table, it will be necessary to 'wrap' our
JTable object in a JScrollPane, which will then be added to the application frame.
The example below uses our Accounts table to illustrate how a JTable may be used
to display the results of an SQL query.

Example

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.sql.*;
import java.util.*;

public class JDBCGUI extends JFrame
{
 private static Connection link;
 private Statement statement;
 private ResultSet results;

Java Database Connectivity 209

 private JTable table;
 private JScrollPane scroller;
 private final String[] heading =
 {"Account No.","Surname","First Names","Balance"};
 private Vector<String> heads;
 private Vector<Object> row;
 private Vector<Vector<Object>> rows;

 public static void main(String[] args)
 {
 JDBCGUI frame = new JDBCGUI();
 frame.setSize(400,200);
 frame.setVisible(true);

 frame.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(
 WindowEvent winEvent)
 {
 try
 {
 link.close();
 System.exit(0);
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "*Error on closing connection!*");
 }
 }
 }
);
 }

 public JDBCGUI()
 {
 setTitle("Accounts Data");
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 link = DriverManager.getConnection(
 "jdbc:odbc:Finances","","");
 statement = link.createStatement();
 results = statement.executeQuery(
 "SELECT * FROM Accounts");

 heads = new Vector<String>();

210 An Introduction to Network Programming with Java

 for (int i=0; i<heading.length; i++)
 {
 heads.add(heading[i]);
 }

 rows = new Vector<Vector<Object>>();

 while (results.next())
 {
 row = new Vector<Object>();
 //Heterogeneous collection.

 row.add(results.getInt(1));
 row.add(results.getString(2));
 row.add(results.getString(3));
 row.add(results.getFloat(4));
 rows.add(row);
 }
 table = new JTable(rows,heads);
 scroller = new JScrollPane(table);
 add(scroller, BorderLayout.CENTER);
 }
 catch(ClassNotFoundException cnfEx)
 {
 System.out.println(
 "* Unable to load driver! *");
 System.exit(1);
 }
 catch(SQLException sqlEx)
 {
 System.out.println("* SQL error! *");
 System.exit(1);
 }
 }
}

The output from the above program when run with our Accounts data is shown in
Figure 7.4.

7.9 Scrollable ResultSets in JDBC 2

In all our examples so far, movement through a ResultSet object has been confined
to the forward direction only, and even that has been restricted to moving by one
row at a time. In fact, JDBC 1 did not allow any other kind of movement, since the
only method available for moving through a ResultSet was next. With the emergence
of JDBC 2 in Java 2, however, a great deal more flexibility was made available to
Java programmers by the introduction of the following ResultSet methods:

Java Database Connectivity 211

• boolean first()
• boolean last()
• boolean previous()
• boolean relative (int <rows>)
• boolean absolute(int <rows>)

 Figure 7.4 Output from program JDBCGUI.

As with method next, the return value in each case indicates whether or not there is
data at the specified position. The purposes of most of these methods are pretty well
self-evident from their names, but the last two probably need a little explanation.
Method relative takes a signed argument and moves forwards/backwards the
specified number of rows. For example:

 results.relative(-3); //Move back 3 rows.

Method absolute also takes a signed argument and moves to the specified absolute
position, counting either from the start of the ResultSet (for a positive argument) or
from the end of the ResultSet (for a negative argument). For example:

 results.absolute(3);
 //Move to row 3 (from start of ResultSet).

Before any of these new methods can be employed, however, it is necessary to
create a scrollable ResultSet. This is achieved by using an overloaded form of the
Connection method createStatement that takes two integer arguments. Here is the
signature for this method:

Statement createStatement(int <resultSetType>,
 int <resultSetConcurrency>)

There are three possible values that the first argument can take to specify the type
of ResultSet object that is to be created. These three values are identified by the

212 An Introduction to Network Programming with Java

following static constants in interface ResultSet:

• TYPE_FORWARD_ONLY
• TYPE_SCROLL_INSENSITIVE
• TYPE_SCROLL_SENSITIVE

As might be guessed, the first option allows only forward movement through the
ResultSet. The second and third options allow movement of the ResultSet's cursor
both forwards and backwards through the rows. The difference between these two is
that TYPE_SCROLL_SENSITIVE causes any changes made to the data rows to be
reflected dynamically in the ResultSet object, whilst TYPE_SCROLL_INSENSITIVE
does not. [More about this in the next section.]

There are two possible values that the second argument to createStatement can
take. These are identified by the following static constants in interface ResultSet:

• CONCUR_READ_ONLY
• CONCUR_UPDATABLE

As is probably obvious from their names, the first means that we cannot make
changes to the ResultSet rows, whilst the second will allow changes to be made (and
to be reflected in the database, as will be seen shortly!).

Example

For this first example involving a scrollable ResultSet, we shall simply modify the
code for the earlier program JDBCSelect by inserting lines that will iterate through
the ResultSet rows starting from the last row, displaying the contents of each row
(immediately after traversing the ResultSet in the forward direction and displaying
the contents, as in the original program). For ease of comparison with the original
program, the new and changed lines relating to the introduction of a scrollable
ResultSet will be shown in bold.
 In order to avoid code duplication, the lines that display the contents of an
individual row from the ResultSet have been place inside a method called showRow
that is called from two places in the code, but these changes do not directly involve
the scrollable ResultSet and have not been shown in bold.

import java.sql.*;

public class JDBCScrollableSelect
{
 private static Connection link;
 private static Statement statement;
 private static ResultSet results;

 public static void main(String[] args)
 {

Java Database Connectivity 213

 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 link = DriverManager.getConnection(
 "jdbc:odbc:Finances","","");
 }
 catch(ClassNotFoundException cnfEx)
 {
 System.out.println(
 "* Unable to load driver! *");
 System.exit(1);
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Cannot connect to database! *");
 System.exit(1);
 }

 try
 {
 statement = link.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 results = statement.executeQuery(
 "SELECT * FROM Accounts");
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Cannot execute query! *");
 sqlEx.printStackTrace();
 System.exit(1);
 }

 try
 {
 while (results.next())
 //Iterate through the rows in the forward
 //direction, displaying the contents of each
 //row (as in the original program)...
 showRow();
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Error retrieving data! *");
 sqlEx.printStackTrace();

214 An Introduction to Network Programming with Java

 System.exit(1);
 }

 try
 {
 //Cursor for ResultSet is now positioned
 //just after last row, so we can make use
 //of method previous to access the data...
 while (results.previous())
 //Iterate through rows in reverse direction,
 //again displaying contents of each row...
 showRow();
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Error retrieving data! *");
 sqlEx.printStackTrace();
 System.exit(1);
 }

 try
 {
 link.close();
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Unable to disconnect! *");
 sqlEx.printStackTrace();
 }
 }

 public static void showRow() throws SQLException
 {
 System.out.println();
 System.out.println("Account no. "
 + results.getInt(1));
 System.out.println("Account holder: "
 + results.getString(3)
 + " " + results.getString(2));
 System.out.printf("Balance: %.2f %n%n",
 results.getFloat(4));
 }
}

The output from this program is shown in Figure 7.5. For some reason, the initial
ordering of rows when using the second version of method createStatement differs

Java Database Connectivity 215

from that which occurs with the original version of createStatement (even though
exactly the same query is used and movement through the data rows is in the
forward direction in both cases). However, it can clearly be seen that the order of
output when previous is used is the reverse of that which occurs in this program
when next is used.

Figure 7.5 Output from program JDBCScrollableSelect.

 In this example, we had no need to move explicitly past the end of the data rows
before we started traversing the rows in reverse order, since the cursor was
conveniently positioned beyond the last row at the end of the forward traversal. If
this had not been the case, however, we could easily have positioned the cursor
beyond the last row by invoking method afterLast. For example:

 results.afterLast();

Analogous to this method, there is a method called beforeFirst that will position the
cursor before the first row of the ResultSet. Another method that is occasionally
useful is getRow, which returns the number of the current row.

7.10 Modifying Databases via Java Methods

Another very useful feature of JDBC 2 is the ability to modify ResultSet rows
directly via Java methods (rather than having to send SQL statements), and to have

216 An Introduction to Network Programming with Java

those changes reflected in the database itself! In order to do this, it is necessary to
use the second version of createStatement again (i.e., the version that takes two
integer arguments) and supply ResultSet.CONCUR_UPDATABLE as the second
argument. The updateable ResultSet object does not have to be scrollable, but, when
making changes to a ResultSet, we often want to move freely around the ResultSet
rows, so it seems sensible to make the ResultSet scrollable.

Example

Statement statement = link.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

As usual, there are three types of change that we can carry out on the data in a
database:

• updates (of some/all fields of a selected row);
• insertions (of new data rows);
• deletions (of existing database rows).

We shall take each of these in turn, starting with updates...
At the heart of updating via Java methods, there is a set of updateXXX methods

(analogous to the getXXX methods that we use to retrieve the data from a row within
a ResultSet), each of these methods corresponding to one of the data types that may
be held in the database. For example, there are methods updateString and updateInt
to update String and int data respectively. Each of these methods takes two
arguments:

• a string specifying the name of the field to be updated;
• a value of the appropriate type that is to be assigned to the field.

There are three steps involved in the process of updating:

• position the ResultSet cursor at the required row;
• call the appropriate updateXXX method(s);
• call method updateRow.

It is this last method that commits the update(s) to the database and must be called
before moving the cursor off the row (or the updates will be discarded).

Example

 results.absolute(2);//Move to row 2 of ResultSet.
 results.updateFloat("balance", 42.55f);
 results.updateRow();
(Note here that an 'f' must be appended to the float literal, in order to prevent the
compiler from interpreting the value as a double.)

Java Database Connectivity 217

For an insertion, the new row is initially stored within a special buffer called the
'insertion row' and there are three steps involved in the process:

• call method moveToInsertRow;
• call the appropriate updateXXX method for each field in the row;
• call method insertRow.

Example

results.moveToInsertRow();
results.updateInt("acctNum", 999999);
results.updateString("surname", "Harrison");
results.updateString("firstNames",
 "Christine Dawn");
results.updateFloat("balance", 2500f);
results.insertRow();

However, it is possible that getXXX methods called after insertion will not retrieve
values for newly-inserted rows. If this is the case with a particular database, then it
will be necessary to close the ResultSet and create a new one (using the original
query), in order for the new insertions to be recognised.

To delete a row without using SQL, there are just two steps:

• move to the appropriate row;
• call method deleteRow.

Example
results.absolute(3); //Move to row 3.
results.deleteRow();

Note that JDBC drivers can handle deletions differently. Some remove the row
completely from the ResultSet, while others use a blank row as a placeholder. With
the latter, the original row numbers are not changed.

Now to bring together all the above 'snippets' of code into one program...

Example

We shall use program JDBCChange from Section 7.5 as the starting point for this
example and make the necessary modifications to it. The new lines will be shown in
bold below

import java.sql.*;

public class JDBC2Mods
{

218 An Introduction to Network Programming with Java

 private static Connection link;
 private static Statement statement;
 private static ResultSet results;

 public static void main(String[] args)
 {
 try
 {
 //Step 1...
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 //Step 2...
 link = DriverManager.getConnection(
 "jdbc:odbc:Finances","","");
 }
 catch(ClassNotFoundException cnfEx)
 {
 System.out.println(
 "* Unable to load driver! *");
 System.exit(1);
 }

 //For any of a number of reasons, it may not be
 //possible to establish a connection...
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* Cannot connect to database! *");
 System.exit(1);
 }

 try
 {
 //Step 3...
 statement = link.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

 String select = "SELECT * FROM Accounts";

 System.out.println(
 "\nInitial contents of table:\n");
 //Steps 4 and 5...
 displayTable();

 //Start of step 6...

 //First the update...

Java Database Connectivity 219

 results.absolute(2);
 //(Move to row 2 of ResultSet.)
 results.updateFloat("balance", 42.55f);
 results.updateRow();

 //Now the insertion...
 results.moveToInsertRow();
 results.updateInt("acctNum", 999999);
 results.updateString("surname", "Harrison");
 results.updateString("firstNames",
 "Christine Dawn");
 results.updateFloat("balance", 2500f);
 results.insertRow();

 //Finally, the deletion...
 results.absolute(3); //Move to row 3.
 results.deleteRow();

 System.out.println(
 "\nNew contents of table:\n");
 displayTable();
 //End of step 6.

 //Step 7...
 link.close();
 }
 catch(SQLException sqlEx)
 {
 System.out.println(
 "* SQL or connection error! *");
 sqlEx.printStackTrace();
 System.exit(1);
 }
 }

 public static void displayTable() throws SQLException
 {
 String select = "SELECT * FROM Accounts";

 results = statement.executeQuery(select);

 System.out.println();

 while (results.next())
 {
 System.out.println("Account no. "
 + results.getInt(1));

220 An Introduction to Network Programming with Java

 System.out.println("Account holder: "
 + results.getString(3)
 + " "
 + results.getString(2));
 System.out.printf("Balance: %.2f %n%n",
 results.getFloat(4));
 }
 }
}

The output from this program is shown in Figure 7.6.

Figure 7.6 Output from the modified JDBC2Mods program.

7.11 Using the DataSource Interface

7.11.1 Overview and Support Software

As demonstrated in earlier sections of this chapter, the original method of accessing
remote databases via JDBC involves making use of the DriverManager class. This

Java Database Connectivity 221

is still the method used by many Java database programmers, but "the preferred
method" (as it is described on the Sun site) is now to make use of the DataSource
interface. This interface is contained in package javax.sql and has been part of the
Standard Edition of Java since J2SE 1.4. The primary advantages of this method are
twofold, as detailed below.

1. The password and connection string are handled by a Web
application server, rather than being hard-coded into the application
program. As a consequence, security is greatly enhanced.

2. At the heart of the method is a concept called connection pooling
(as described briefly in section 7.2). This is a much more efficient
method of handling multiple database connections, and so is more
applicable to real-world, commercial databases.

As indicated by point 1 above, we need the services of a Java-aware Web
application server in order to make use of the DataSource interface. The server used
here (and in later chapters) is Tomcat, a very popular open source server produced
by the Apache Software Foundation's Jakarta project. Apache Tomcat is also the
servlet container that is used in the official Reference Implementation for the Java
Servlet and JavaServer Pages technologies (as covered in the next two chapters).
 The steps required to obtain a free download of the latest version of Tomcat, to
install this server and to start and stop it are given in Section 8.2 of the next chapter.
In order to understand fully the material in the current section, the reader must have
some familiarity with servlets. If the reader does not have such familiarity, then
he/she is advised to read the following chapter before continuing with the present
section.
 Tomcat includes a Database Connection Pool (DBCP) connection broker. DBCP is
part of the Jakarta commons sub-project found at
http://jakarta.apache.org/commons. In order to use DBCP from within Tomcat, the
following two files must be downloaded into folder
<CATALINA_HOME>\common\lib:

• commons-dbcp(-1.2.1).jar
• commons-pool(-1.2.1).jar

The brackets above are not any part of the file names, of course, but indicate version
numbers that may be different in future. Remember that CATALINA_HOME is the
Tomcat root directory. The steps required to download these two files are given
below.

1. Go to http://jakarta.apache.org/common.

2. Click on the Release link under 'Downloads' on the left side of the page.

3. Click on the Commons DBCP link in the central list.

4. Scroll down and click on 1.2.1.zip (or more recent one, if available).

5. Using WinZip (or some other suitable utility), select commons.dbcp-(1.2.1).zip
and extract this file to <CATALINA_HOME>\common\lib.

222 An Introduction to Network Programming with Java

6. Click on the browser's Back button.

7. Scroll down the page and click on the Commons Pool link in the central list.

8. As step 4 above.

9. As step 5 above, but selecting file commons-pool-(1.2).jar from the ZIP file.

10. If the above files have been saved within sub-folders of
<CATALINA_HOME>\common\lib, move them out of these sub-folders (and
then delete the sub-folders).

 Since DBCP uses JNDI (Java Naming and Directory Interface), it is necessary to
configure the JNDI data source before it can be used. (If you are unfamiliar with
JNDI, then don't be concerned. You won't really need to know anything about it in
order to follow the material in this section.) Three steps are required in order to
configure the JNDI data source. Here are the steps, with details provided in the sub-
sections that follow...

1. Define a JNDI resource reference in the Web deployment descriptor, which is a
file called web.xml. Every Web application requires the existence of such a file,
which must be in <CATALINA_HOME>\webapps\<WebAppName>\WEB-INF.

2. Map the JNDI resource reference onto a real resource (a database) in the context
of the application. This is done by editing file server.xml, which is in
<CATALINA_HOME>\conf.

3. In the application code, look up the JNDI data source reference to obtain a
pooled database connection. This connection may then be used in the same way
that such connections were used after having been set up via the DriverManager
class in the earlier sections of this chapter.

Details of the three steps listed above are given in the next few sub-sections. For
purposes of illustration, we shall assume the existence of a MySQL database called
Finances that holds a single table called Accounts. The structure of this simple table
will be the same as that specified in Section 7.4 for the MS Access table that was
used for illustration in earlier sections of this chapter, the only slight variation being
in the names of the MySQL types. The structure of this is shown below.

Field Name MySQL Type Java Type

acctNum INTEGER int
surname VARCHAR(15) String
firstNames VARCHAR(15) String
balance FLOAT float

7.11.2 Defining a JNDI Resource Reference

This is achieved by creating a <resource-ref> tag in web.xml. This tag must appear
after the <servlet-mapping> tag(s) and has three named elements:

Java Database Connectivity 223

• <res-ref-name>, which specifies a name for the connection, this name
commencing with jdbc/;

• <res-type>, which identifies the reference as being of type
javax.sql.DataSource (i.e., a JDBC data source);

• <res-auth>, which specifies that resource authentication will be
applied by the Web Container (Tomcat).

Example

<resource-ref>
 <res-ref-name>jdbc/Finances</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

7.11.3 Mapping the Resource Reference onto a Real Resource

In server.xml, use either a <Context> tag or a <DefaultContext> tag and place it
within the <Host> tag. If the resource is to be available to all Web applications, a
<DefaultContext> tag should be used; if it is to be used by only one application,
then a <Context> tag for the specific application should be used.
 Before Tomcat 5.5, it was necessary to place <Resource> and
<ResourceParams> tags inside the <Context>/<DefaultContext> tag. The first of
these contained attributes name, type and auth, with values identical to those in
<resource-ref> above, while the second defined the database connection
information. The <ResourceParams> tag had a name attribute specifying the
resource reference and was followed by four <parameter> tags, one for each of the
following parameters: username, password, driverClassName and url. Each
parameter tag contained <name> and <value> entries. The first and second of these
parameter values, of course, were user-specific, while the last was database-specific.
The third value specified the class holding the database driver, which was in a JAR
file that had to be in <CATALINA_HOME>\common\lib.
 The example below shows the driver name for a MySQL database. (Previously,
this was known by the name org.gjt.mm.mysql.Driver.) The url value shows the
required syntax for referencing a specific database on a specific host.

Example (Pre-Tomcat 5.5)

<Context path="/myapps" docBase="myapps" debug="0"
 reloadable="true">

 <Resource name="jdbc/Finances"
 type="javax.sql.DataSource" auth="Container" />

 <ResourceParams name="jdbc/Finances">

 <parameter>

224 An Introduction to Network Programming with Java

 <name>username</name>
 <value>cmsjg3</value>
 </parameter>

 <parameter>
 <name>password</name>
 <value>opensesame</value>
 </parameter>

 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.jdbc.Driver</value>
 </parameter>

 <parameter>
 <name>url</name>
 <value>
 jdbc:mysql://ivy.shu.ac.uk:3306/cmsjg3_Finances
 </value>
 </parameter>

 </ResourceParams>

</Context>

 Attempting to use the above code with Tomcat 5.5, however, will generate error
messages. As of Tomcat 5.5, all the parameters that were previously defined within
a separate <ResourceParams> tag must be defined within the <Resource> tag, as
shown in the example below. (The <ResourceParams> tag does not actually exist
within Tomcat 5.5.) Of course, the reader will need to determine the appropriate
values for the host (including port number) and database reference for the required
database at his/her own site and use these in the url attribute.

Example (Tomcat 5.5)

<Context path="/myapps" docBase="myapps" debug="0"
 reloadable="true">

 <Resource name="jdbc/Finances"
 type="javax.sql.DataSource" auth="Container"
 username="cmsjg3" password="opensesame"
 driverClassName="com.mysql.jdbc.Driver"
 url=
 "jdbc:mysql://ivy.shu.ac.uk:3306/cmsjg3_Finances"
 />

</Context>

Java Database Connectivity 225

Note that, as before, the JAR file holding the database driver must be in
<CATALINA_HOME>\common\lib.

7.11.4 Obtaining the Data Source Connection

In order to use JNDI, it is necessary to import javax.naming. The name used when
referring to the data source within an application program must be identical to that
used in the <res-ref-name> tag within the Web application's deployment descriptor
(the web.xml file). In order to resolve the resource associated with this name, it is
necessary to obtain the JNDI context for the Web application. Getting the context
and resolving the resource requires the three steps shown below.

1. Get a reference to the 'initial context', which is the starting context for
performing naming operations. This is done simply by creating an InitialContext
object. For example:

 Context initialContext = new InitialContext();

2. Get a reference to the Java environment variables (the 'Java context') by calling
method lookup on the above InitialContext object, supplying the method with the
string "java:comp/env". This method will return an Object reference that must be
typecast into a Context reference. For example:

 Context context =
 (Context)initialContext.lookup("java:comp/env");

3. Call method lookup on the Java Context object returned above, supplying it with
the name of the required database, using the name that was supplied in the <res-
ref-name> tag within the deployment descriptor. This will need to be typecast
into a DataSource reference. For example:

 dataSource =
 (DataSource)context.lookup("jdbc/Finances");

Control code for the particular application will be provided by at least one servlet.
The code above can be placed inside the servlet's init method, as shown in the
example below.

Example

private DataSource dataSource;

public void init(ServletConfig config)
 throws ServletException
{
 try
 {
 Context initialContext = new InitialContext();

226 An Introduction to Network Programming with Java

 Context context =
 (Context)initialContext.lookup(
 "java:comp/env");
 dataSource =
 (DataSource)context.lookup("jdbc/Finances");
 }
 catch (NamingException namEx)
 {

 }

This avoids incurring the overhead of JNDI operations being generated for every
HTTP request. In the doGet/doPost method, a database connection can then be
established via method getConnection. For example:

 connection = dataSource.getConnection();
(Assuming here, of course, that connection is a pre-declared Connection reference.)

SQL statements can then be executed and results processed exactly as they would
have been if the DriverManager class had been used to establish the connection.
 However, this will mean that HTML presentation code and database access code
are intermingled in the servlet, which is not a good idea from a design point of view.
It is better to make use of a separate Data Access Object (DAO) to establish the
connection. The creation and use of such objects will be described in the next sub-
section.

7.11.5 Data Access Objects

These encapsulate access to databases so that the data manipulation code can be
separated from the business logic and data presentation code. A DAO is written as a
JavaBean. Though JavaBeans will not be covered formally until a later chapter, all
that need be said right now is that a JavaBean is an ordinary Java class file with the
following characteristics:

• it is unlikely to have a main method;
• it must be in a named package;
• it implements the Serializable interface (which, as you will recall

from Chapter 4, is simply a marker interface with no methods).

The DAO includes a constructor that contains the context-setting and connection
code, along with any other methods required to access and/or manipulate the data
source. Since servlets associated with a particular Web application are contained
within <CATALINA_HOME>\webapps\<WebAppName>\WEB-INF\classes and the
DAO must be in a named package easily accessible to the servlet that will use it, the
DAO will be stored within a sub-folder of classes that has the same name as its
package.

Java Database Connectivity 227

Example

This example establishes a connection to our example MySQL database Finances
and provides an access method called getAcctDetails that returns all the data in the
Accounts table, using a Vector of Objects to hold the heterogeneous data set.

package myDAOs;

import java.sql.*;
import javax.naming.*;
import javax.sql.*;
import java.util.*;

public class AccountsDAO implements java.io.Serializable
{
 private Connection connection;

 public AccountsDAO()
 throws SQLException, NamingException
 {
 Context initialContext = new InitialContext();

 Context context =
 (Context)initialContext.lookup("java:comp/env");
 DataSource dataSource =
 (DataSource)context.lookup("jdbc/Finances");

 connection = dataSource.getConnection();
 }

 public Vector<Object> getAcctDetails()
 throws SQLException
 {
 Vector<Object> acctDetails = null;
 Statement statement = null;
 ResultSet results = null;

 statement = connection.createStatement();
 results = statement.executeQuery(
 "SELECT * FROM Accounts");

 acctDetails = new Vector<Object>();

 while (results.next())
 {
 acctDetails.add(results.getInt(1));
 acctDetails.add(results.getString(3) + " "
 + results.getString(2));
 acctDetails.add(results.getFloat(4));

228 An Introduction to Network Programming with Java

 }

 return acctDetails;
 }

 public void close() throws SQLException
 {
 //Any error on disconnecting is handled by servlet.
 connection.close();
 }
}

A simple example servlet that makes use of an instance of the above DAO class is
shown below.

Example

This servlet calls method getAcctDetails on the DAO object and displays the results
in an HTML table.

import myDAOs.*;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;
import javax.naming.*;

public class DAOTestServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 try
 {
 processRequest(request, response);
 }
 catch (SQLException sqlEx)
 {
 System.out.println("Error: " + sqlEx);
 sqlEx.printStackTrace();
 }
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {

Java Database Connectivity 229

 try
 {
 processRequest(request, response);
 }
 catch (SQLException sqlEx)
 {
 System.out.println("Error: " + sqlEx);
 sqlEx.printStackTrace();
 }
 }

public void processRequest(
 HttpServletRequest request,

 HttpServletResponse response)
 throws ServletException, IOException, SQLException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>DAO Test</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY><CENTER>

");
 out.println("<h1>Account Details</h1>");
 out.println("<TABLE BGCOLOR='aqua' BORDER=1>");
 out.println("<TR>");
 out.println(
 "<TH BGCOLOR='orange'>Acct.No.</TH>");
 out.println(
 "<TH BGCOLOR='orange'>Acct.Name</TH>");
 out.println(
 "<TH BGCOLOR='orange'>Balance</TH>");
 out.println("</TR>");

 AccountsDAO dao = null;
 try
 {
 dao = new AccountsDAO();
 }
 catch (NamingException namEx)
 {
 System.out.println("Error: " + namEx);
 namEx.printStackTrace();
 }

 Vector<Object> accounts = dao.getAcctDetails();
 int acctNum;

230 An Introduction to Network Programming with Java

 String acctName;
 float balance;
 final int NUM_FIELDS = 3;

 for (int i=0; i<accounts.size()/NUM_FIELDS; i++)
 {
 acctNum =
 (Integer)accounts.elementAt(i*NUM_FIELDS);
 acctName =
 (String)accounts.elementAt(i*NUM_FIELDS+1);
 balance =
 (Float)accounts.elementAt(i*NUM_FIELDS + 2);
 out.println("<TR>");
 out.println("<TD>" + acctNum + "</TD>");
 out.println("<TD>" + acctName + "</TD>");
 out.println("<TD>" + balance + "</TD>");
 out.println("</TR>");
 }
 out.println("</TABLE>");
 out.println("</CENTER>");

 out.println("</BODY>");
 out.println("</HTML>");

 out.close();

 try
 {
 dao.close();
 }
 catch (SQLException sqlEx)
 {
 System.out.println(
 "* Unable to disconnect! *");
 sqlEx.printStackTrace();
 }
 }
}

In order to access the above servlet, Tomcat must be started, either by double-
clicking on file startup.bat (in <CATALINA_HOME>\bin) or by entering the
following command into an MS DOS command window (assuming that startup.bat
is on the PATH):

startup

By default, Tomcat runs on the local machine (identified by the name localhost) on
port 8080. The URL that must be entered into your browser to execute the above

Java Database Connectivity 231

servlet is http://localhost:8080/<WebAppName>/DAOTestServlet (replacing
<WebAppName> with the name of the containing Web application, of course). This
will generate output of the form shown in Figure 7.7.

 Figure 7.7 Example output from the DAOTestServlet program.

232 An Introduction to Network Programming with Java

Exercises

When attempting the exercises below, you may use whichever type of database is
convenient for you. If you are going to use an MS Access database, it will be
appropriate to implement your solutions only via the DriverManager approach. If
using any other type of database, however, it will probably be instructive to attempt
to produce solutions both via the DriverManager approach and via the DataSource
approach. (When implementing exercises 7.5 and 7.6 via the latter approach, of
course, you should ignore the JTable and GUI references.)

7.1 (i) Ensure that either your database system has an accessible JDBC driver (using
the URL supplied in section 7.1, if necessary) or it has an ODBC driver (so that
you can use the JDBC-ODBC bridge driver).

 (ii) Create a database called Sales with a single table called Stock. Give it the
structure shown below and enter a few rows of data for use in the later
exercises. Make sure that there is at least one item for which the current level is
at or below the reorder level.

Field Name Type
stockCode Integer
description Text/String
unitPrice Real/Float/Currency
currentLevel Integer
reorderLevel Integer

 (iii) If you need to use the JDBC-ODBC bridge driver, then follow the
procedure outlined in section 7.3 to create an ODBC DSN for your database.

7.2 (i) Write a program to display the stock code, unit price and current level for all
items in table Stock.

 (ii) Modify the above code to display description, current level and reorder level
for all items whose current level is at or below reorder level.

7.3 Take a backup of your database. Then create a program (using SQL strings) that
will insert one record, increase by 10% the unit price of each item of stock and
delete one record with specified stock code. The program should display stock
codes and prices of all items both before and after the changes.

7.4 Restore your database to its original state by deleting it and then reinstating it
with your backup copy. Modify the preceding program so that, instead of using
SQL strings, it uses Java methods (as described in section 7.10) to effect the
same changes. If you are using an MS Access database, you should find that the
insertion and updates don’t work (possibly with all prices being changed to
zero!), but the deletion should work fine.

Java Database Connectivity 233

7.5 Using a ResultSetMetaData object, write a program that displays the full
contents of the Stock table in a JTable. (Field names should be retrieved via the
ResultSetMetaData object.)

7.6 Write a simple GUI-driven program that will allow the user to retrieve the
current stock level of any item whose stock code he/she enters (repeatedly, for
as many items as the user wishes).

8 Servlets

Learning Objectives
After reading this chapter, you should:

• understand what Java servlets are and how they are used;
• appreciate the power of Java servlets;
• know what software and installation steps are required before servlets can

be created and tested;
• know how to create your own servlets for processing simple form data

and returning results in a Web page;
• know how to create and use session variables with servlets;
• know how to redirect a user to any of several possible Web pages and/or

servlets;
• know how to make use of cookies with servlets;
• know how to make use of servlets (and JDBC) to access a remote

database.

HTML (HyperText Markup Language) is the tagging language used to create Web
pages. In order to appreciate fully the material presented in this chapter, it will be
necessary to have at least a rudimentary knowledge of HTML. If you do not have
such knowledge, you are advised to consult the early chapters of one of the widely-
available HTML texts before reading any further.

Through the introduction of HTML and its distribution system, the World Wide
Web, use of the Internet has mushroomed at a phenomenal rate. However, HTML
alone can only be used to create static Web pages ⎯ pages whose content is
determined at the time of writing and which never changes. Though this is perfectly
adequate for some applications, an increasing number of others have a requirement
for dynamic web pages ⎯ pages whose content changes according to the particular
user or in response to changing data. Some common examples are listed below.

• Results of a real-time, online survey.
• Results of a search operation.
• Contents of an electronic shopping cart.

One powerful and increasingly popular way of satisfying this need is to use Java
servlets.

8.1 Servlet Basics

A servlet is a program written in Java that runs on a Web server. It is executed in
response to a client's (i.e., a browser's) HTTP request and creates a document

Servlets 235

(usually an HTML document) to be returned to the client by the server. It extends
the functionality of the server, without the performance limitations associated with
CGI programs. All the major Web servers now have support for servlets.
 A servlet is Java code that is executed on the server, while an applet is Java code
that is executed on the client. As such, a servlet may be considered to be the server-
side equivalent of an applet. However, Java's servlet API is not part of the J2SE
(Java 2 Standard Edition), though it is included in the J2EE (Java 2 Enterprise
Edition). This means that non-Enterprise users must download an implementation of
the Java servlet API.

8.2 Setting up the Servlet API

The official Reference Implementation of the Java Servlet API (as mentioned in
Section 7.11) is Tomcat, a very popular open source server produced by the Apache
Software Foundation. The latest stable version of Tomcat at the time of writing is
5.5.12 and this is the version to which reference is made below, simply for the
convenience of having some version number to use. This version will undoubtedly
be different by the time the current text is published, but the required steps are likely
to remain much the same, with the only notable changes being in the number of the
version and the names of the associated installation folders. Obviously, the user will
normally want to select the latest non-beta version.

1. Go to http://tomcat.apache.org/whichversion.html.

2. Click on the Tomcat 5.X link.

3. Click on the 5.5.12 link.

4. Click on the zip link under the 'Core' bullet header. This will cause file apache-
tomcat-5.5.12.zip (size 6.42MB) to be downloaded. (At the author's site, it was
automatically saved to folder C:\temp, but this may very well be different at your
site or you may be given the choice of where you wish the file to go.)

5. Use WinZip (or some other suitable utility program) to extract the downloaded
(compressed) files. It will probably be a good idea to navigate to your J2SE root
folder and extract the files there. This will create a sub-folder structure headed by
a folder called apache-tomcat-5.5.12. This should probably be renamed to
something shorter such as Tomcat5.5.

6. Use the Control Panel to set up the two environment variables listed below. (If
you are unsure of how to create environment variables, please refer to the details
supplied following the steps below.)

 (i) JAVA_HOME
 This should hold the path to your J2SE folder. For example:
 C:\J2SE5.0

236 An Introduction to Network Programming with Java

 (ii) CATALINA_HOME
 This should hold the path to your Tomcat folder. For example:
 C:\J2SE5.0\Tomcat5.5

7. Add file servlet-api.jar to your CLASSPATH variable. (Details of how to modify
an environment variable follow these steps.) This file will be in
<CATALINA_HOME >\common\lib. For example:

 C:\J2SE5.0\Tomcat5.5\common\lib\servlet-api.jar.

8. Within your Tomcat folder is a folder called bin. Add the path to this folder to
your PATH variable. (Again, refer to the instructions following these steps if you
are unsure of how to change this environment variable.) This step gives easy
access to the startup.bat and shutdown.bat files mentioned below. Alternatively,
of course, you can move into the above folder before using the startup and
shutdown commands.

9. Open up a command window and enter the following command:

 startup

 Four lines of output should appear in the window and a second command
window should open and begin to fill up with output. When a line commencing
INFO: Server startup appears in this second window, the Tomcat server is
running.

10. To see information about Tomcat, open up a browser window and enter:

http://localhost:8080

 This identifies port 8080 on the current machine as being the port upon which

Tomcat will run. If the Tomcat Web page appears, the installation has been
successful.

11. To stop Tomcat, enter the following command into the (first) command window:

 shutdown
 (This assumes, of course, that your PATH variable has been modified as

described three steps earlier.)

For Windows XP users, the PATH or CLASSPATH environment variable may be
modified or a new environment variable created by following the steps given below.
(The CLASSPATH environment variable may itself not exist before this, in which
case it should be treated as a new environment variable for all three Microsoft
operating systems that are covered below.)

1. Select Start->Settings->Control Panel from the desktop.
2. Double-click on the System icon.

Servlets 237

3. Select the Advanced tab.
4. Click on Environment Variables...
5. Either select PATH or CLASSPATH from User Variables and then click on Edit

or click on New to create a new environment variable.
6. If adding a new path to PATH or CLASSPATH, then either prepend the new path

and a trailing semi-colon (<newPath>;<existingPath>) or append it with a
leading semi-colon (<existingPath>;<newPath>). If creating a new environment
variable, simply enter the name of the new variable and its associated path.

7. Click on OK and then again on OK.

For Windows 2000 users, the only difference is in the first step:

• Select Start->Settings->Control Panel from the desktop.

For Windows NT users, the required steps are slightly different and are given below.

1. Select Start->Settings->Control Panel from the desktop.
2. Double-click on the System icon.
3. Either select PATH or CLASSPATH from User Variables or click on the button

to create a new environment variable.
4. If adding a new path to PATH or CLASSPATH, then either prepend the new path

and a trailing semi-colon (<newPath>;<existingPath>) or append it with a
leading semi-colon (<existingPath>;<newPath>). If creating a new environment
variable, simply enter the name of the new variable and its associated path.

5. Click on Set, Apply and then OK.

For the remainder of this chapter, it is Tomcat that will be used for the execution of
servlets.

8.3 Creating a Web Application

To set up your own servlets (and/or JSPs, as explained in the next chapter), you need
to create a Web application under Tomcat or make use of an existing one. There are
two possible methods:

• make use of the already-existing ROOT application (directly below
webapps in the Tomcat folder structure);

• create your own application at the same level as ROOT, providing a
similar folder structure to that of ROOT.

Normally, you will want to take the latter option. The main part of the folder
structure for ROOT is:

ROOT->WEB-INF->classes

238 An Introduction to Network Programming with Java

Thus, creating a Web application called mywebapp means creating the following
folder structure (immediately below webapps):

mywebapp->WEB-INF->classes

 The rules governing what makes up a Web application and what goes where in
such an application are listed below. For convenience, the name of the Web
application here and through the rest of the chapter will be shown as mywebapp, but
this can be any name of your own choosing.

1. Place HTML files and JSPs (covered in the next chapter) within mywebapp (or
within ROOT).

2. Place servlets within mywebapp\WEB-INF\classes (or within ROOT\WEB-
INF\classes). If packages are used, there must be a folder structure within classes
to reflect this.

3. Create a file called web.xml within WEB-INF. This file is known as the
deployment descriptor and specifies details of the Web application (as
described below). In particular, it must contain <servlet> and <servlet-
mapping> tags for each servlet.

The opening lines of the deployment descriptor are always the same and may simply
be copied from one Web application to the next. In fact, it is highly advisable to
copy these lines (i.e., via a wordprocessor, not by transcribing them), since it is very
easy to make a mistake, particularly with the string identifying the XML schema
location. The naive user may even place a line break in the middle of this.
 The example below shows a deployment descriptor for a Web application
containing a single servlet called FirstServlet. The servlet must have <servlet> and
<servlet-mapping> tags that identify the associated Java .class file and the servlet's
URL location (relative to the web application) respectively. These <servlet> and
<servlet-mapping> tags will have exactly the same structure for any other servlet.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<web-app>

 <servlet>
 <servlet-name>FirstServlet</servlet-name>
 <servlet-class>FirstServlet</servlet-class>
 </servlet>

Servlets 239

 <servlet-mapping>
 <servlet-name>FirstServlet</servlet-name>
 <url-pattern>/FirstServlet</url-pattern>
 </servlet-mapping>

</web-app>

Note the use of a '/' in the <url-pattern> tag! This is easily omitted.

 If any changes are made to servlet tags after Tomcat has started, it will be
necessary to stop Tomcat (via shutdown) and re-start it (via startup). This is
also necessary after changing any servlet.

8.4 The Servlet URL and the Invoking Web Page

Before we consider the structure of a servlet, recall that a servlet will be executed on
a Web server only in response to a request from a user's browser. Though the servlet
may be invoked directly by entering its URL into the browser (an example of which
is shown at the end of the previous chapter), it is much more common for a servlet to
be called from a preceding HTML page. This is usually achieved by the use of an
HTML form, with the form's METHOD attribute specifying either 'GET' or 'POST'
and its ACTION attribute specifying the address of the servlet. As noted in the
previous section, each servlet must be held in folder
<CATALINA_HOME>\webapps\<WebAppName>\WEB-INF\classes. The URL for
such a servlet has the following format:

http://localhost:8080/<WebAppName>/<ServletName>

For example:

http://localhost:8080/mywebapp/FirstServlet

Note the use of localhost above to refer to the current machine and 8080 to indicate
that Tomcat uses port 8080. Usually, of course, client and server programs will be
on separate machines, but this gives us a convenient test bed for our programs. The
servlet above may then be invoked via the ACTION attribute of a FORM tag in a
preceding HTML page as follows:

 <FORM METHOD=GET ACTION="FirstServlet">

Note that the URL for the servlet is relative to the Web application that contains
both servlet and HTML page.

To keep things as simple as possible for the time being, we shall start off with a
Web page that calls up a servlet without actually sending it any data. The code for
this simple Web page is shown below.

240 An Introduction to Network Programming with Java

Example

<HTML>

 <HEAD>
 <TITLE>A First Servlet</TITLE>
 </HEAD>

 <BODY>

 <CENTER>

 <FORM METHOD=GET ACTION="FirstServlet">
 <INPUT TYPE="Submit" VALUE = "Click me!">
 </FORM>
 </CENTER>
 </BODY>

</HTML>

Before we look at the output from this Web page, we need to consider just what our
servlet will look like...

8.5 Servlet Structure

Servlets must import the following two packages:

• javax.servlet
• javax.servlet.http

In addition, since servlet output uses a PrintWriter stream, package java.io is
required. Servlets that use the HTTP protocol (which means all servlets, at the
present time) must extend class HttpServlet from package java.servlet.http. The two
most common HTTP requests (as specified in the HTML pages that make use of
servlets) are GET and POST. At the servlet end, method service will despatch either
method doGet or method doPost in response to these requests. The programmer
should override (at least) one of these two methods.

Without going into unnecessary detail, you should use the POST method for
multiple data items and either GET or POST for single items. All three methods
(doGet, doPost and service) have a void return type and take the following two
arguments:

• an HttpServletRequest object;
• an HttpServletResponse object.

The former encapsulates the HTTP request from the browser and has several
methods, but none will be required by our first servlet. The second argument holds

Servlets 241

the servlet's response to the client's request. There are just two methods of this
HttpServletResponse object that are of interest to us at present and these are shown
below.

• void setContentType(String <type>)
 This specifies the data type of the response. Normally, this will be

"text/HTML".
• PrintWriter getWriter()
 Returns the output stream object to which the servlet can write character

data to the client (using method println).

There are four basic steps in a servlet...

1. Execute the setContentType method with an argument of "text/HTML".
2. Execute the getWriter method to generate a PrintWriter object.
3. Retrieve any parameter(s) from the initial Web page.
 (Not required in our first servlet.)
4. Use the println method of the above PrintWriter object to create elements of the

Web page to be 'served up' by our Web server.

The above steps are normally carried out by doGet or doPost. Note that these
methods may generate IOExceptions and ServletExceptions, which are checked
exceptions (and so must be either thrown or handled locally). Note also that step 4
involves a lot of tedious outputting of the required HTML tags.

Example

This first servlet simply displays the message 'A Simple Servlet'.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FirstServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 response.setContentType("text/HTML");

 PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Simple Servlet</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY>");
 out.println("

");
 out.println(

242 An Introduction to Network Programming with Java

 "<CENTER><H1>A Simple Servlet</H1></CENTER>");
 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 }
}

Note the use of method flush of the PrintWriter object to send data out of the
object's buffer.

This servlet should now be compiled in the same way as any other Java program,
either by using a development environment or by opening a command window and
executing the Java compiler as follows:

 javac FirstServlet.java

8.6 Testing a Servlet

In order to test our Web page and associated servlet, we first need to set Tomcat
running. This may be done either by double-clicking on file startup.bat (in
<CATALINA_HOME>\bin) or by entering the following command into an MS DOS
command window (assuming that startup.bat is on the PATH):

startup

Four lines of output should appear in the current command window and a second
command window will begin to fill up with output. When the line commencing
INFO: Server startup appears in the second window, Tomcat is running.
 Assuming that our initial Web page has been given the name FirstServlet.html, we
can now open up our browser and enter the following address:

http://localhost:8080/FirstServlet.html

Figure 8.1 shows what this initial Web page looks like under the Firefox browser.
Upon clicking on the page's button, the servlet is executed and the output shown in
Figure 8.2 is produced.

8.7 Passing Data

The previous example was very artificial, since no data was passed by the initial
form and so there was no unpredictability about the contents of the page generated
by the servlet. We might just as well have had two static Web pages, with a
hyperlink connecting one to the other. Let's modify the initial form a little now, in
order to make the example rather more realistic...

Servlets 243

<FORM METHOD=GET ACTION="PersonalServlet">
 Enter your first name:
 <INPUT TYPE="Text" NAME="FirstName" VALUE="">

 <INPUT TYPE="Submit" VALUE="Submit">
</FORM>

Figure 8.1 Button to connect to servlet FirstServlet.

Figure 8.2 Output from FirstServlet under Firefox 1.5.

244 An Introduction to Network Programming with Java

Now our form will accept the user's first name and, once the 'Submit' button is
clicked, will pass the value entered to the servlet. The servlet may then make use of
this value when constructing the page to be returned by the Web server.

It is now appropriate to consider the methods of HttpServletRequest that are
responsible for handling values/parameters received by servlets. There are three such
methods, as listed below.

• String getParameter(String <name>)
 Returns the value of a single parameter sent with GET or POST.

• Enumeration getParameterNames()
 Returns the names of all parameters sent with POST.

• String[] getParameterValues(String <name>)
 Returns the values for a parameter that may have more than one value.

Only the first of these methods is needed for a single parameter sent via GET, which
is all we require for our current example. The code below shows our first servlet
modified so that it adds the name entered by the user to the greeting that is displayed
on the returned page. The code shown in bold type indicates the very few changes
made to the original program.

Example

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class PersonalServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 response.setContentType("text/HTML");

 PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Simple Servlet</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY>");
 out.println("

");
 String name = request.getParameter("FirstName");
 out.println("<CENTER><H1> A Simple Servlet for ");
 out.println(name + "</H1></CENTER>");
 out.println("</BODY>");
 out.println("</HTML>");

Servlets 245

 out.flush();
 }
}

This is what the initial page looks like (after a name has been entered into the text
box):

Figure 8.3 Web page for passing a single data item to a servlet.

The servlet-generated page (after the above button has been clicked) is shown in
Figure 8.4.

One potential problem with this method is that, if the browser's 'Back' button is
clicked to return to the opening Web page, the initial name entered is still visible.
This doesn't really matter in this particular example, but, for other (repeated) data
entry, it probably would. In order to overcome this problem, we need to force the
browser to reload the original page, rather than retrieve it from its cache, when a
return is made to this page. There is an HTML META tag that will do this, but the
tag varies from browser to browser. However, the following set of tags will satisfy
most of the major browsers:

<META HTTP-EQUIV="Pragma" CONTENT="no cache">
<META HTTP-EQUIV="Cache-control" CONTENT="no cache">
<META HTTP-EQUIV="Expires" CONTENT="0">

These should be placed immediately after the <HEAD> tag on the initial Web page.

246 An Introduction to Network Programming with Java

Figure 8.4 Servlet output making use of data item received from initial Web page.

 Continuing now with the approach of gradually adding to the complexity of our
servlets, the next step is to carry out some processing of the data entered and display
the results of such processing. The next example accepts two numbers, adds them
and then displays the result. Since there are multiple inputs, we shall use the POST
method. In addition, an HTML table has been used for laying out the page elements
neatly.

Example

Firstly, the code for the initial Web page...

<!-- SimpleAdder.html -->

<HTML>

 <HEAD>
 <META HTTP-EQUIV ="Pragma" CONTENT="no cache">
 <META HTTP-EQUIV ="Cache-control"
 CONTENT="no cache">
 <META HTTP-EQUIV ="Expires" CONTENT="0">
 <TITLE>Simple Adder</TITLE>
 <HEAD>

 <BODY>
 <CENTER>
 <FORM METHOD=POST ACTION="AdderServlet">

Servlets 247

 <TABLE>
 <TR>
 <TD>First number</TD>
 <TD><INPUT TYPE="Text" NAME="Num1"

 VALUE="" SIZE=5></TD>
 </TR>
 <TR>
 <TD>Second number</TD>
 <TD><INPUT TYPE="Text" NAME="Num2"

 VALUE="" SIZE=5></TD>
 </TR>
 </TABLE>

 <INPUT TYPE="Submit" VALUE = "Submit">
 <INPUT TYPE="Reset" VALUE="Clear">
 </FORM>
 </CENTER>
 </BODY>
</HTML>

Since the user may enter a non-numeric value, the servlet must cater for a possible
NumberFormatException. In addition, method getParameter will need to convert
the strings it receives into integers by using the parseInt method of the Integer
wrapper class. Now for the code...

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AdderServlet extends HttpServlet
{
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 try
 {
 String value1 = request.getParameter("Num1");
 String value2 = request.getParameter("Num2");
 int num1 = Integer.parseInt(value1);
 int num2 = Integer.parseInt(value2);
 int sum = num1 + num2;

 sendPage(response,"Result = " + sum);
 }
 catch(NumberFormatException nfEx)
 {
 sendPage(response,"*** Invalid entry! ***");

248 An Introduction to Network Programming with Java

 }
 }

 private void sendPage(HttpServletResponse reply,
 String result) throws IOException
 {
 reply.setContentType("text/HTML");
 PrintWriter out = reply.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Result</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY>");
 out.println("

");
 out.println("<CENTER><H1>");
 out.println("Result=" + result);
 out.println("</H1></CENTER>");
 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 }
}
Note the convenient dual-purpose use of method sendPage to return either the result
page or an error page.

Here's the output from the initial Web page:

 Figure 8.5 Web page receiving two integers to be sent to a servlet.

Servlets 249

Output from the servlet:

Figure 8.6 Result of a simple calculation sent back by servlet AdderServlet.

8.8 Sessions

One fundamental restriction of HTTP is that it is a stateless protocol. That is to say,
each request and each response is a self-contained and independent transaction.
However, different parts of a Web site often need to know about data gathered in
other parts. For example, the contents of a customer's electronic cart on an e-
commerce shopping site need to be updated as the customer visits various pages and
selects purchases. To cater for this and a great number of other applications, servlets
implement the concept of a session. A session is a container where data about a
client's activities may be stored and accessed by any of the servlets that have access
to the session object. The session expires automatically after a prescribed timeout
period (30 minutes for Tomcat) has elapsed or may be invalidated explicitly by the
servlet (by execution of method invalidate).

A session object is created by means of the getSession method of class
HttpServletRequest. This method is overloaded:

• HttpSession getSession()
• HttpSession getSession(boolean create)

If the first version is used or the second version is used with an argument of true,
then the server returns the current session if there is one; otherwise, it creates a new

250 An Introduction to Network Programming with Java

session object. For example:

 HttpSession cart = request.getSession();

If the second version is used with an argument of false, then the current session is
returned if there is one, but null is returned otherwise.
 A session object contains a set of name-value pairs. Each name is of type String
and each value is of type Object. Note that objects added to a session must
implement the Serializable interface. (This is true for the String class and for the
type wrapper classes such as Integer.) A servlet may add information to a session
object via the following method:

 void setAttribute(String <name>, Object <value>)

Example

String currentProduct=request.getParameter("Product");
HttpSession cart = request.getSession();
cart.setAttribute("currentProd",currentProduct);

The method to remove an item is removeAttribute, which has the following
signature:

Object removeAttribute(String <name>)

For example:

 cart.removeAttribute(currentProduct);

To retrieve a value, use:

Object getAttribute (String <name>)

Note that a typecast will usually be necessary after retrieval. For example:

String product =
 (String)cart.getAttribute("currentProd");

To get a list of all named values held, use:

String[] getAttributeNames()

For example:

String[] prodName = cart.getAttributeNames();

It's now time to put these individual pieces together into a full example application...

Servlets 251

Example

This example involves a simplified shopping cart into which the user may place a
specified weight of apples and/or a specified weight of pears. Three servlets are
used:

• Selection (of apples/pears);
• Weight (to be entered);
• Checkout.

If one servlet needs to transfer execution to another, then method sendRedirect of
class HttpServletResponse may be used. The initial HTML page makes use of radio
buttons (<INPUT TYPE="Radio"...........>).

<!-- ShoppingCart.html
Home page for a very simple example of the use
of servlets in a shopping cart application.
Demonstrates the use of session variables.
-->

<HTML>

 <HEAD>
 <META HTTP-EQUIV ="Pragma" CONTENT="no cache">
 <META HTTP-EQUIV ="Cache-control"
 CONTENT="no cache">
 <META HTTP-EQUIV ="Expires" CONTENT="0">
 <TITLE>Shopping Cart</TITLE>
 </HEAD>

 <BODY>
 <CENTER>
 <H1>Simple Shopping Cart
 </H1>

 <FORM METHOD=POST ACTION="Selection">

 <TABLE>
 <TR>
 <TD><INPUT TYPE="Radio" NAME="Product"

 VALUE = "Apples" CHECKED>
 Apples</TD>
 </TR>
 <TR>
 <TD><INPUT TYPE="Radio" NAME="Product"

 VALUE = "Pears">
 Pears</TD>
 </TR>

252 An Introduction to Network Programming with Java

 <TR>
 <TD><INPUT TYPE="Radio" NAME="Product"

 VALUE = "Checkout">

 Go to checkout</TD>
 </TR>
 </TABLE

 <INPUT TYPE="Submit" VALUE="Submit">

 </FORM>
 </CENTER>
 </BODY>

</HTML>

Here's what this initial Web page looks like (without colour!):

 Figure 8.7 Initial Web page for a simple shopping cart application.

When a selection has been made and the user has clicked 'Submit', the Selection
servlet is executed. Before we look at the code for this servlet, there is an apparent
minor problem (that turns out not to be a problem at all) that needs to be covered...
 As you are aware by now, a servlet builds up a Web page by outputting the
required HTML tags in string form via method println of class PrintWriter. This

Servlets 253

means, of course, that any string literals must be enclosed by speech marks. For
example:

println("<HTML>");

However, the next servlet needs to output a FORM tag with an ACTION attribute
specifying the address of another servlet. This address, if we follow the convention
from our previous examples, will already be enclosed by speech marks. If we try to
include both sets of speech marks, then an error will be generated, since what is
intended to be opening of the inner speech marks will be taken as closure of the
outer speech marks. Here is an example of such invalid code:

 out.println("<FORM METHOD=POST ACTION="AnyServlet"");

One solution to this apparent problem is to use inverted commas, instead of speech
marks, for the inner enclosure:

 out.println("<FORM METHOD=POST ACTION='AnyServlet'");

However, provided that we have no spaces within the address that we are using, we
do not actually need either speech marks or inverted commas to enclose the address,
so the following is perfectly acceptable:

 out.println("<FORM METHOD=POST ACTION=AnyServlet");

If we wish to enclose any attributes explicitly, though, we must use inverted
commas.

The code for the Selection servlet is shown below.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Selection extends HttpServlet
{
 private final float APPLES_PRICE = 1.45F;
 private final float PEARS_PRICE = 1.75F;
 //In a real application, above prices would
 //be retrieved from a database, of course.

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 String currentProduct =
 request.getParameter("Product");
 HttpSession cart = request.getSession();

254 An Introduction to Network Programming with Java

 cart.putValue("currentProd",currentProduct);
 //Places user's selected product into the session
 //variable called 'cart'.
 //This product name will then be available to any
 //servlet that accesses this session variable.

 if (currentProduct.equals("Checkout"))
 response.sendRedirect("Checkout");
 else
 sendPage(response,currentProduct);
 //Creates page for selection of weight.
 }

 private void sendPage(HttpServletResponse reply,
 String product) throws IOException
 {
 reply.setContentType("text/HTML");
 PrintWriter out = reply.getWriter();

 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>" + product + "</TITLE>");
 out.println("</HEAD>");

 out.println("<BODY>");

 out.println("<CENTER>");
 out.println("<H1>"
 + product + "</H1>");
 out.println("

");

 out.println("<FORM METHOD=POST ACTION='Weight'");

 out.println("<TABLE>");
 out.println("<TR>");
 out.println(" <TD>Quantity required (kg)");
 out.println(" <INPUT TYPE='Text' NAME='Qty'"
 + " VALUE='' SIZE=5></TD>");
 out.println("</TR>");
 out.println("</TABLE>");

 out.println("

");

 out.println("<TABLE>");

 out.println("<TR>");
 out.println(" <TD><INPUT TYPE='Radio'"
 + " NAME='Option' VALUE='Add' CHECKED>");

Servlets 255

 out.println(" "
 + "Add to cart.</TD>");
 out.println("</TR>");

 out.println("<TR>");
 out.println(" <TD><INPUT TYPE='Radio'"
 + " NAME='Option' VALUE='Remove'>");
 out.println(" " +
 "Remove item from cart.</TD>");
 out.println("</TR>");

 out.println("<TR>");
 out.println(" <TD><INPUT TYPE='Radio'"
 + " NAME='Option' VALUE='Next'>");
 out.println(" "
 + "Choose next item.</TD>");
 out.println("</TR>");

 out.println("<TR>");
 out.println(" <TD><INPUT TYPE='Radio'"
 + " NAME='Option' VALUE='Checkout'>");
 out.println(" "
 + "Go to checkout.</TD>");
 out.println("</TR>");

 out.println("</TABLE>");

 out.println("

");
 out.println("<INPUT TYPE='Submit'
 VALUE='Submit'>");
 out.println("</FORM>");
 out.println("</CENTER>");

 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 }
}

As an alternative to the use of sendRedirect to transfer control to another servlet (or
HTML page), we can create a RequestDispatcher object and call its forward
method.

Example

RequestDispatcher requestDispatcher =
 request.getRequestDispatcher("Checkout");
requestDispatcher.forward(request, response);

256 An Introduction to Network Programming with Java

 Provided that the user did not select 'Checkout' on the initial page [See later for
coverage of this], the Web page shown in Figure 8.8 is presented. As can be seen, a
weight has been entered by the user.

Figure 8.8 Weight entry page for simple shopping cart application.

When a selection has been made and 'Submit' clicked, the Weight servlet is
executed. Here is the code for the Weight servlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Weight extends HttpServlet
{
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 HttpSession cart = request.getSession();
 String currentProduct =

 (String)cart.getAttribute("currentProd");
 //Current product ('Apples' or 'Pears') retrieved.
 //Note the necessity for a typecast from Object
 //into String.

 String choice = request.getParameter("Option");

Servlets 257

 /*
 Above parameter determines whether user wishes
 to select another product, add the current order
 to the cart, remove an existing order from
 the cart or proceed to the checkout.
 User is redirected to the appropriate page
 (after any required updating of the shopping
 cart session variable has been carried out).
 */

 if (choice.equals("Next"))
 response.sendRedirect("ShoppingCart.html");

 if (choice.equals("Checkout"))
 response.sendRedirect("Checkout");

 if (choice.equals("Add"))
 {
 doAdd(cart,request);
 response.sendRedirect("ShoppingCart.html");
 }

 if (choice.equals("Remove"))
 //Not really possible for it to be
 //anything else, but play safe!
 {
 doRemove(cart);
 response.sendRedirect("ShoppingCart.html");
 }
 }

 private void doAdd(HttpSession cart,
HttpServletRequest

request)
 {
 String currentProduct =
 (String)cart.getAttribute("currentProd");
 String qty = request.getParameter("Qty");
 //Value of weight entered by user retrieved here.

 if (qty!=null)
 //Check that user actually entered a value!
 {
 if (currentProduct.equals("Apples"))
 cart.setAttribute("Apples",qty);
 else
 cart.setAttribute("Pears",qty);
 }

258 An Introduction to Network Programming with Java

 }

 private void doRemove(HttpSession cart)
 {
 String currentProduct =
 (String)cart.getAttribute("currentProd");
 Object product =
 cart.getAttribute(currentProduct);
 //Note that there is no need for a typecast into
 //String, since we only need to know that there
 //is an order for the current product in the cart.

 if (product!=null)
 //Product found in cart.
 cart.removeAttribute(currentProduct);
 }
}

 Once all product selections have been made and the 'Checkout' option has been
taken, the Checkout servlet will be executed. Before we look at the code for this
servlet, though, we need to consider the issue of formatting decimal output, since
the Checkout servlet needs to show costs to precisely two decimal places and to
allow a sensible maximum field size. We can't use printf, since this is a member of
the PrintStream class, not of the PrintWriter class. However, J2SE 5.0 introduced
the equivalent method format into the PrintWriter class and it is this method that we
shall use.

Now for the Checkout servlet code...

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Enumeration;

public class Checkout extends HttpServlet
{
 private final float APPLES_PRICE = 1.45F;
 private final float PEARS_PRICE = 1.75F;
 //In a real application, the above prices would be
 //retrieved from a database, of course.

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 HttpSession cart = request.getSession();

 response.setContentType("text/HTML");

Servlets 259

 PrintWriter out = response.getWriter();

 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Checkout</TITLE>");
 out.println("</HEAD>");

 out.println("<BODY>");
 out.println("

");

 out.println("<CENTER>");

 out.println(
 "<H1>Order List</H1>");
 out.println("

");

 out.println("<TABLE BGCOLOR=Aqua BORDER=2>");
 out.println("<TR>");
 out.println("<TH>Item</TH>");
 out.println("<TH>Weight(kg)</TH>");
 out.println("<TH>Cost(£)</TH>");
 out.println("</TR>");

 cart.removeAttribute("currentProd");
 Enumeration prodNames = cart.getAttributeNames();
 float totalCost = 0;

 int numProducts = 0;
 while (prodNames.hasMoreElements())
 {
 float wt=0,cost=0;
 String product =
 (String)prodNames.nextElement();
 String stringWt =
 (String)cart.getAttribute(product);
 wt = Float.parseFloat(stringWt);
 if (product.equals("Apples"))
 cost = APPLES_PRICE * wt;
 else if (product.equals("Pears"))
 cost = PEARS_PRICE * wt;

 out.println("<TR>");
 out.println("<TD>" + product + "</TD>");
 out.format("<TD> %4.2f </TD>%n",wt);
 out.format("<TD> %5.2f </TD>%n",cost);
 out.println("</TR>");
 totalCost+=cost;

260 An Introduction to Network Programming with Java

 numProducts++;
 }
 if (numProducts == 0)
 {
 out.println("<TR BGCOLOR=Yellow>");
 out.println(
 "<TD>*** No orders placed! ***</TD></TR>");
 }
 else
 {
 out.println("<TR BGCOLOR=Yellow>");
 out.println("<TD></TD>"); //Blank cell.
 out.println("<TD>Total cost:</TD>");
 out.format("<TD> %5.2f </TD>%n",totalCost);
 out.println("</TR>");
 }
 out.println("</TABLE>");
 out.println("</CENTER>");

 out.println("</BODY>");
 out.println("</HTML>");

 out.flush();
 }
}

Example output from the Checkout servlet is shown in Figure 8.9.

 Session variables allow much more interesting and dynamic Web sites to be
created. However, they do not allow a user's personal details/preferences to be
maintained between visits to the same site. The next section will show how this may
be done.

8.9 Cookies

Cookies provide another means of storing a user's data for use whilst he/she is
navigating a Web site. Whereas sessions provide data only for the duration of one
visit to the site, though, cookies store information that may be retrieved on
subsequent visits to the site. (In actual fact, Session objects make use of Cookie
objects.) They can be used to personalise pages for the user and/or select his/her
preferences. Cookies have been used by CGI programmers for years and the
developers of Java's servlet API incorporated this de facto standard into the servlet
specification. What is a cookie, though?

A cookie is an associated name-value pair in which both name and value are
strings. (E.g., "username" and "Bill Johnson".) It is possible to maintain a cookie
simply for the duration of a browsing session, but it is usually stored on the client
computer for future use. Each cookie is held in a small file sent by the server to the

Servlets 261

client machine and retrieved by the server on subsequent visits by the user to the
site. The constructor for a Java Cookie object must have this signature:

 Cookie(String <name>, String <name>)
(Note that there is no default constructor.)

Figure 8.9 Customer's order summary page for simple shopping cart application.

Once a cookie has been created, it must be added to the HttpServletResponse object
via the following HttpServletResponse method :

void addCookie(Cookie <name>)

For example:

response.addCookie(myCookie);

Cookies are retrieved via the following method of class HttpServletRequest:

Cookie[] getCookies()

For example:

 Cookie[] cookie = request.getCookies();

The lifetime of cookie is determined by method setMaxAge, which specifies the
number of seconds for which the cookie will remain in existence (usually a rather

262 An Introduction to Network Programming with Java

large number!). If any negative value is specified, then the cookie goes out of
existence when the client browser leaves the site. A value of zero causes the cookie's
immediate destruction. Other useful methods of the Cookie class (with pretty
obvious purposes) are shown below.

• void setComment(String <value>)
 (A comment is optionally used to describe the cookie.)

• String getComment()

• String getName()

• String getValue()

• void setValue(String <value>)

• int getMaxAge()

Example

This will be a modification of the earlier 'Simple Adder' example. On the user's first
visit to the site, he/she will be prompted to enter his/her name and a choice of both
foreground and background colours for the addition result page. These values will be
saved in cookies, which will be retrieved on subsequent visits to the site. If the user
fails to enter a name, there will be no personalised header. Failure to select a
foreground colour will result in a default value of black being set, whilst failure to
select a background colour will result in a default value of white being set. The only
differences in the initial HTML file are in the lines giving the names of the two files
involved:

<!-- CookieAdder.html -->
...
...
<FORM METHOD=POST ACTION="CookieAdder">
...
...

 Servlet CookieAdder will set up a new Session object, retrieve the user's cookies
and create session variables corresponding to those cookies. (A Session object is
preferable, since three servlets will be involved, all of which require access to the
data values. This saves each servlet from having to download the cookies
separately.) In addition to the contents of the cookies, the result of the addition will
need to be saved in a session variable. If the appropriate session variable indicates
that this is the user's first visit to the site, method sendRedirect will be used to pass
control to a preferences servlet. In order to avoid code duplication, control will also
need to be redirected to a result-displaying servlet from both the initial servlet and
the preferences servlet.

Here's the code for CookieAdder (the initial servlet):

Servlets 263

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CookieAdder extends HttpServlet
{
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 int sum=0;
 try
 {
 String value1 = request.getParameter("Num1");
 String value2 = request.getParameter("Num2");

 int num1=Integer.parseInt(value1);
 int num2=Integer.parseInt(value2);
 sum = num1 + num2;

 }
 catch(NumberFormatException nfEx)
 {
 sendPage(response, "*** Invalid entry! ***");
 return;
 }

 HttpSession adderSession = request.getSession();
 adderSession.putValue("sum",new Integer(sum));
 /*
 Second argument to putValue must be a class
 object, not a value of one of the primitive
 types, so an object of class Integer is
 created above.
 */

 Cookie[] cookie = request.getCookies();
 int numCookies = cookie.length;
 for (int i=0; i<numCookies; i++)
 adderSession.putValue(
 cookie[i].getName(),cookie[i].getValue());

 if (adderSession.getValue("firstVisit") == null)
 //First visit, so redirect to preferences servlet.
 response.sendRedirect("GetPreferences");
 else
 response.sendRedirect("ShowSum");
 }

264 An Introduction to Network Programming with Java

 private void sendPage(HttpServletResponse reply,
 String message) throws IOException
 {
 reply.setContentType("text/HTML");
 PrintWriter out = reply.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Result</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY>");
 out.println("

");
 out.println("<CENTER>"+message+"</CENTER>");
 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 }
}

 Note the addition of cookie values to the current session (making use of the
Cookie class's getName and getValue methods). If this is the user's first visit to the
site (indicated by a null value for session variable firstVisit), then the user is
redirected to the GetPreferences servlet. Since the GetPreferences servlet is not
receiving form data, it implements the doGet method...

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GetPreferences extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 response.setContentType("text/HTML");

 HttpSession adderSession = request.getSession();

 adderSession.putValue("firstVisit","Yes");

 PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Preferences</TITLE>");
 out.println("</HEAD>");

 out.println("<BODY>");
 out.println("

");

Servlets 265

 out.println("<CENTER>");
 out.println(
 "<FORM METHOD=POST ACTION='ShowSum'>");
 out.println(""
 + "User Preferences");
 out.println("
");
 out.println("<TABLE>");
 out.println("<TR>");
 out.println("<TD>First name</TD>");
 out.println("<TD><INPUT TYPE='Text' "
 + "NAME='Name' VALUE='' SIZE=15></TD>");
 out.println("</TR>");
 out.println("<TR>");
 out.println("<TD>Foreground colour</TD>");
 out.println("<TD><INPUT TYPE='Text' "
 + "NAME='ForeColour' VALUE='' "
 + "SIZE=10></TD>");
 out.println("</TR>");
 out.println("<TR>");
 out.println("<TD>Background colour</TD>");
 out.println("<TD><INPUT TYPE='Text' "
 + "NAME='BackColour' VALUE='' "
 + "SIZE=10></TD>");
 out.println("</TR>");
 out.println("</TABLE>");
 out.println("

");
 out.println("<INPUT TYPE='Submit' "
 + "VALUE = 'Submit'>");
 out.println("<INPUT TYPE='Reset' "
 + "VALUE='Clear'>");
 out.println("</CENTER>");

 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 }
}

Note the setting of session variable firstVisit to 'Yes', for subsequent checking by the
ShowSum servlet. Figure 8.10 shows the output generated by the GetPreferences
servlet and some example user entry:
 Servlet ShowSum may be called from either GetPreferences or CookieAdder.
Since the former passes on form data and the latter doesn't, ShowSum implements
neither doPost nor doGet, but method service. Before attempting to transmit the
result page, the servlet checks the value of session variable firstVisit. If this variable
has been set to 'Yes', the servlet retrieves the user's preferences (via the
HttpServletRequest object), creates the appropriate cookies and updates the session

266 An Introduction to Network Programming with Java

variables (including the setting of the firstVisit cookie variable and session variable
to 'No').

Figure 8.10 A page to accept the user's preferences for storing in cookies.

Here is the code for the ShowSum servlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ShowSum extends HttpServlet
{
 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,ServletException
 {
 HttpSession adderSession = request.getSession();

 String firstTime =
 (String)adderSession.getValue("firstVisit");
 if (firstTime.equals("Yes"))
 retrieveNewPreferences(
 request,response,adderSession);

 sendPage(response,adderSession);
 }

Servlets 267

 private void sendPage(HttpServletResponse reply,
 HttpSession session) throws IOException
 {
 String userName,foreColour,backColour,sum;

 userName = (String)session.getValue("name");
 foreColour =
 (String)session.getValue("foreColour");
 backColour =
 (String)session.getValue("backColour");

 /*
 Value of 'sum' originally saved as instance of
 class Integer (and saved as instance of class
 Object in session object), so we cannot typecast
 into class String as done for three values above.
 Instead, we use method toString of class
 Object...
 */
 sum = session.getValue("sum").toString();

 reply.setContentType("text/HTML");

 PrintWriter out = reply.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Result</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY TEXT=" + foreColour
 + " BGCOLOR=" + backColour + ">");
 out.println("<CENTER>");
 if (!userName.equals(""))
 out.println("<H2>" + userName + "'s "
 + "Result</H2>");
 out.println("

<H3>" + sum + "</H3>");
 out.println("</CENTER>");
 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 }

 private void retrieveNewPreferences(
 HttpServletRequest request,
 HttpServletResponse response,HttpSession session)
 {
 final int AGE = 180; //(180secs = 3mins)

 String forename = request.getParameter("Name");

268 An Introduction to Network Programming with Java

 if (forename==null) //Should never happen!
 return;

 if (!forename.equals(""))
 {
 Cookie nameCookie =
 new Cookie("name",forename);
 nameCookie.setMaxAge(AGE);
 response.addCookie(nameCookie);
 session.putValue("name",forename);
 }

 String fColour =
 request.getParameter("ForeColour");
 if (fColour.equals(""))
 fColour = "Black";
 Cookie foreColourCookie =
 new Cookie("foreColour",fColour);
 foreColourCookie.setMaxAge(AGE);
 response.addCookie(foreColourCookie);
 session.putValue("foreColour",fColour);

 String bColour =
 request.getParameter("BackColour");
 if (bColour.equals(""))
 bColour = "White";
 Cookie backColourCookie =
 new Cookie("backColour",bColour);
 backColourCookie.setMaxAge(AGE);
 response.addCookie(backColourCookie);
 session.putValue("backColour",bColour);

 Cookie visitCookie =
 new Cookie("firstVisit","No");
 visitCookie.setMaxAge(AGE);
 response.addCookie(visitCookie);
 session.putValue("firstVisit","No");
 }
}

Example output is shown in Figure 8.11.

8.10 Accessing a Database Via a Servlet

Nowadays, accessing a database over the Internet or an intranet is a very common
requirement. Using JDBC within a servlet allows us to do this. In fact, Section 7.11

Servlets 269

from the preceding chapter demonstrated how to do this through use of the
DataSource interface, which is now the 'preferred method' of accessing a remote
database via JDBC. However, the more traditional way of providing this access is to
use the DriverManager class and this is still the method used by many Java database
programmers. It is this approach that will be combined with the use of servlets in the
current section.

Figure 8.11 Page output according to user's preferences (as specified in cookies).

 The only additional servlet methods required are init and destroy. These are
methods of interface Servlet and are implemented by class HttpServlet. Method init
is called up once at the start of the servlet's execution (to carry out any required
initialisation), while method destroy is called up once at the end of the servlet's
execution (to carry out any required 'clean-up' operations, such as returning any
allocated resources). We must provide an overriding definition of init that will load
the JDBC driver and set up a database connection. Note that init should first make a
call to super. We also override destroy by supplying a definition that closes the
database connection. Both init and destroy must throw (or handle)
ServletExceptions, of course.

Example

A Microsoft Access database called HomeDB.mdb contains a table called
PhoneNums, which has fields Surname, Forenames and PhoneNum. A User DSN
(Data Source Name) of HomeDB has been set up for the above database. (Refer back
to Chapter 7 for details of how to do this.) The initial HTML page
(JDBCServletTest.html) uses a form to accept a new record and then passes the

270 An Introduction to Network Programming with Java

values entered by the user to a servlet that adds a record to the phone numbers table
and displays the new contents of this table. (Note that the use of the <PRE> tag
below will produce slightly differing output in different browsers.)

The HTML code for the initial page is shown below.

<!-- JDBCServletTest.html -->
<HTML>

 <HEAD>
 <TITLE>Database Insertion Form</TITLE>
 </HEAD>

 <BODY>
 <H1><CENTER>Phonebook</CENTER><H1>
 <FORM METHOD=POST ACTION="DbServlet">
 <PRE>
 Surname: <INPUT TYPE="Text" NAME="Surname">
 Forenames: <INPUT TYPE="Text"
 NAME="Forenames">
 Phone number: <INPUT TYPE="Text"
 NAME="PhoneNum">
 </PRE>

 <CENTER><INPUT TYPE="Submit"
 VALUE="Commit"></CENTER>
 </FORM>
 </BODY>

</HTML>

Here's the code for servlet DbServlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*; //Don't forget this!

public class DbServlet extends HttpServlet
{
 private Statement statement;
 private Connection link;
 private String URL = "jdbc:odbc:HomeDB";

 public void init() throws ServletException

Servlets 271

 {
 super.init();

 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 link = DriverManager.getConnection(URL,"","");
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException,IOException
 {
 String surname,forenames,telNum;

 surname = request.getParameter("Surname");
 forenames = request.getParameter("Forenames");
 telNum = request.getParameter("PhoneNum");

 response.setContentType("text/HTML");
 PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Servlet + JDBC</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY>");

 String insertion = "INSERT INTO PhoneNums"
 + " VALUES('" + surname + "','"
 + forenames + "','" + telNum + "')";

 try
 {
 statement = link.createStatement();
 statement.executeUpdate(insertion);
 statement.close(); //Ensures committal.
 }
 catch (SQLException sqlEx)
 {
 out.println("
<CENTER><H2>Unable to execute"
 + " insertion!</H2></CENTER>");
 out.println("</BODY>");

272 An Introduction to Network Programming with Java

 out.println("</HTML>");
 out.flush();
 System.exit(1);
 }

 try
 {
 statement = link.createStatement();
 ResultSet results =
 statement.executeQuery(
 "SELECT * FROM PhoneNums");

 out.println("Updated table:");
 out.println("

<CENTER>");
 out.println("<TABLE BORDER>");
 out.println("<TR><TH>Surname</TH>");
 out.println("<TH>Forename(s)</TH>");
 out.println("<TH>Phone No.</TH></TR>");

 while (results.next())
 {
 out.println("<TR>");
 out.println("<TD>");
 out.println(results.getString("Surname"));
 out.println("</TD>");
 out.println("<TD>");
 out.println(results.getString("Forenames"));
 out.println("</TD>");
 out.println("<TD>");
 out.println(results.getString("PhoneNum"));
 out.println("</TD>");
 out.println("</TR>");
 }
 out.println("</TABLE>");
 }
 catch(SQLException sqlEx)
 {
 out.println(
 "
<H2>Unable to retrieve data!</H2>");
 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 System.exit(1);
 }

 out.println("</CENTER>");
 out.println("<BODY>");
 out.println("</HTML>");

Servlets 273

 out.flush();
 }

 public void destroy()
 {
 try
 {
 link.close();
 }
 catch(Exception ex)
 {
 System.out.println(
 "Error on closing database!");
 ex.printStackTrace();
 System.exit(1);
 }
 }
}

The output from JDBCServletTest.html and some example user data are shown in
Figure 8.12.

Figure 8.12 Data entry for submission to a remote database via servlet and JDBC.

The final output (after the entry of details for five records) is shown in Figure 8.13.

274 An Introduction to Network Programming with Java

Figure 8.13 Updated database table retrieved via servlet after insertion of record by same
servlet.

Servlets 275

Exercises

Note that you will not be able to do any of the exercises listed below until you have
set up the Java servlet API, as described in section 8.2.

8.1 (i) Following the procedure outlined in Section 8.3, set up the folder structure
for a Web application with a name of your own choosing.

 (ii) Create a deployment descriptor (file web.xml) within your WEB-INF folder
and enter <servlet> and <servlet-mapping> tags for servlet PersonalServlet.

 (iii) Copy PersonalServlet.java from section 8.7 into the classes folder of your
Web application and copy PersonalServlet.html from the same section into your
Web application's root folder (the one just below webapps in the Tomcat
hierarchy). Compile PersonalServlet.java.

(iv) Open a command window and start Tomcat running with the startup
command (or double-click on file startup.bat in ÇATALINA_HOME\bin).

(v) Start up a Web browser and enter the following address:
 http://localhost:8080/PersonalServlet.html

(vi) Enter your name and click on 'Submit'.

8.2 (i) Modify the above Web page and servlet so that the POST method is used to
send both the user's name and his/her email address. The Web page returned
should display the user's email address below the original message.

(ii) Once the servlet has been compiled without error, execute the command
shutdown in the initial command window and then re-start the server. Use
your browser to test your new servlet.

8.3 (i) Copy AdderServlet.java from section 8.7 into your classes folder and
SimpleAdder.html from the same section into your Web app's root folder. Then
compile the Java servlet.

 (ii) Add the appropriate <servlet> and <servlet-mapping> tags for the above
servlet to your deployment descriptor.

(iii) Start up Tomcat (stopping it first, if it is already running) and access the
above Web page via any browser (as for the preceding programs).

(iv) Enter integers into the two text boxes, as prompted, and click on 'Submit'.

8.4 (i) Copy ShoppingCart.html from section 8.8 into your Web app's root folder.

276 An Introduction to Network Programming with Java

 (ii) Create your own Selection servlet, placing it in the classes folder. This
servlet should generate a Web page that simply displays the name of the product
selected by the user.

 (iii) Add the appropriate tags to your deployment descriptor and compile the
servlet.

 (iv) Start up Tomcat (stopping it first, if it is already running) and then test the
servlet by accessing ShoppingCart.html in your browser window.

8.5 (i) Remove (or rename) the Selection servlet from the last task and then copy
Selection.java, Weight.java and Checkout.java from section 8.8 into the classes
folder.

 (ii) Add the appropriate tags to your deployment descriptor and compile the
three servlets.

(iii) Start up Tomcat (stopping it first, if it is already running) and then access
ShoppingCart.html via your browser. Experiment with this simple shopping cart
application.

8.6 Extend the above application to cater for selection of bananas, as well as apples
and pears.

8.7 Further extend the above application to allow the user to enter his/her name the
first time only that he/she accesses the home page during a given session.
Achieve this by redirecting the user on this first occasion to a simple HTML
page called GetName.html that accepts the name and then passes control back to
the Selection servlet. Ensure that the user's initial selection is still stored in the
session, as well as his/her name and any subsequent selections. Display the
user's name in the checkout heading.

8.8 (i) Copy CookieAdder.html into your Web app's root folder. Then copy
CookieAdder.java, GetPreferences.java and ShowSum.java into the classes
folder

 (ii) Add the appropriate tags to your deployment descriptor and compile the
three servlets.

(iii) Start up Tomcat (stopping it first, if it is already running) and then access
the above Web page via your browser. Experiment with differing input to the
Web page. Notice that you will not be permitted to change your preferences
immediately after entering them. However, since the cookies will 'time out' after
3 minutes, you will be able to experiment with other values if you wait for this
timeout and then re-load the initial page.

(iv) Modify ShowSum.java so that the result page shows either the date and
time of the user's last visit to the page or, if it is the user's first visit, a message

Servlets 277

to indicate this. [Use new to create a Date object (package java.util) and the
Date object's toString method to place the date value into a cookie.] Re-compile
the servlet.

(v) Stop Tomcat, re-start it and then re-test the above application with the
modified servlet.

9 JavaServer Pages (JSPs)

Learning Objectives
After reading this chapter, you should:

• appreciate why the JavaServer Pages technology was introduced
and the circumstances under which JSPs should be used instead of
servlets;

• appreciate when JSPs and servlets may appropriately be used
together;

• be aware of the process that occurs when a JSP is referenced by a
browser;

• know the basic structure and allowable contents of a JSP;
• know how to combine the above elements to produce a working

JSP;
• know how to combine JSPs and servlets in an application;
• know how to set up a JSP error page to handle exceptions

generated by a JSP.

The term JavaServer Pages is used to refer to both a technology and the individual
software entities created by that technology (though reference is often made,
somewhat redundantly, to ‘JSP Pages’, rather than simply JSPs). The technology
was introduced in late 1999 as a new Java API and is an extension of servlet
technology. Like servlets, JSPs (the software entities) generate HTML pages with
dynamic content. Unlike servlets, though, JSPs are not Java programs, but HTML
documents with embedded Java code supplied via HTML-style tags. A JSP file must
have the suffix .jsp, which will allow the JSP to be recognised by any JSP-aware
Web server, so that the JSP filename may be supplied in a URL to a browser or may
appear in the address for a hyperlink on an HTML page (as, indeed, may any
servlet). We can use Tomcat to test our JSPs, just as we used it to test our servlets.

9.1 The Rationale behind JSPs

Since JSPs serve essentially the same purpose as servlets, it is natural to ask why
there is a need for both. The simple answer is that servlets require the expertise of
Java programmers, whilst the production of Web pages for anything more than a
simple site is usually the responsibility of Web page authors, who often do not have
such programming skills. The introduction of the JavaServer Pages technology
attempts to return the job of Web page authoring to those people whose
responsibility it is, whilst the Java programmers maintain responsibility for the
software components used upon the Web pages. Using JSPs rather than servlets also
removes the rather tedious repetition of out.println for HTML tags.

JavaServer Pages (JSPs) 279

 However, the original JSP API still required Web page authors to supply small
‘snippets’ of Java code in their JSPs. Since those early days, much work has gone
into producing additional HTML-style tags that will further reduce the amount of
programming required in JSPs. The major output of this effort has been the
JavaServer Pages Standard Tag Library (JSTL), which has been developed (and
continues to be developed) by the JSR-052 expert group as part of the Java
Community Process. JSTL provides support for iterations, conditions, the processing
of XML documents, internationalisation and database access using SQL. At its heart
is Expression Language (EL), which is designed specifically for Web authors. An
enhanced version of EL was integrated into the JSP 2.0 specification, so JSTL is
required only when using JSP 1.2. The latest version of JSTL at the time of writing
is 1.2. Coverage of JSTL goes beyond the scope of this text, however, and no further
mention will be made of it. The interested reader is referred to
http://java.sun.com/products/jsp/jstl.
 Although the remainder of this chapter will be devoted to the use of scripting
within JSPs, it is worth pointing out that the use of scripting code should be kept to a
minimum. It is also worth mentioning in passing that such scripting code may
actually be provided in other languages (such as Perl, JavaScript or VBScript), but
Java is the natural vehicle to use.
 JSPs don’t make servlets redundant. Servlets are still useful for supplying overall
control to all/part of a Web site. This is achieved by a servlet receiving HTTP
requests, determining what action to take, carrying out the necessary background
processing (e.g., opening up a connection to a remote database) and then passing
control to a JSP or ordinary HTML page that provides the response to the initial
browser request. This last stage may involve the servlet selecting the appropriate
page from a number of possible pages. Thus, servlets and JSPs may be used together
in a complementary and harmonious manner.
 Before we consider the structure and contents of a JSP, we shall examine what
happens behind the scenes when a JSP is called up by a server…

9.2 Compilation and Execution

JSPs are held in the same Web application server folder as that holding HTML files.
(For Tomcat, of course, this means the root folder of the Web application.) When a
JSP is first referenced by a Web server, it is actually converted into a servlet. This
servlet is then compiled and the compiled code stored on the server for subsequent
referencing. (For Tomcat, this compiled code is stored in
<CATALINA_HOME>\work.) If the referencing by the server was in response to a
request for the JSP from a browser, the compiled code would then be executed. All
subsequent browser requests for this JSP would cause the compiled code to be
executed on the server. This would continue to be the case until either the server was
shut down (a rare event for most Web servers) or the JSP source code was changed.
(The Web server detects a change by comparing dates of source and compiled files.)

A consequence of the above is that, if the first time that a JSP is referenced by the
Web server occurs when a request is received from a browser, there is a noticeable
delay for the user of the browser as the Web server goes through the conversion and

280 An Introduction to Network Programming with Java

translation phases before executing the compiled code. In order to avoid this first-
time delay, pre-compiled JSPs may be used. One way of creating pre-compiled
JSPs is for the Web page developer to use a development environment to go through
all the JSPs on the site (causing the conversion-compilation-execution cycle to be
performed) and then save the resultant .class files in the appropriate directory of the
production version of the site. However, a more convenient way of producing the
precompiled pages is provided by the JSP specification in the form of a special
request parameter called jsp_precompile. Use of this parameter avoids the need to
execute the associated JSP and may be used by a JSP container to produce the
required .class file(s). Like any request parameter included within a URL,
jsp_precompile is preceded by a question mark. The following example shows the
format required to precompile a JSP called MyPage.jsp:

 MyPage.jsp?jsp_precompile

The parameter jsp_precompile is a Boolean parameter, so the above line could
alternatively end in jsp_precompile=true to make this explicit. However, this
is not necessary, since the default value for this parameter is true.
 When a browser calls up a Web page, the Web server executes the compiled JSP
elements to produce HTML elements, merges these with the static HTML elements
of the page and serves up the completed page to the browser. One important
difference between testing servlets and testing JSPs is that it is not necessary to stop
and restart the server when changes are made to a JSP.

9.3 JSP Tags

In addition to standard HTML tags and ordinary text, a number of JSP-specific tags
may be used on a JavaServer Page. The differing categories of JSP tag are listed
below. This list is followed by a description of the purpose of each category, its
required syntax and associated brief examples.

• Directives.
• Declarations.
• Expressions.
• Scriptlets.
• Comments.
• Actions.

Note that all of the keywords used in the tags below must be in lower case.

• Directives

There are three tags in this category:

• page (used to define the attributes of the Web page, via a number of
other keywords such as language, contentType and import);

JavaServer Pages (JSPs) 281

• include (specifying an external file to be inserted);
• taglib (specifying a custom tag library to be used).

These directives are processed by the JSP engine upon conversion of the JSP into a
servlet. Such tags commence with <%@ and end with %>. Note there must be no
spaces between % and @!

Examples

<%@ page language="java" contentType="text/html"
import="java.util.*" %>
(The language and contentType settings above are actually
superfluous, since they are the default values.)

<%@ include file="myFile.html" %>

<%@ taglib uri="myTagLib" %>

Note the use of the import attribute with the page tag to allow the usual
abbreviated reference to the contents of any available Java package.

• Declarations

These declare variables for subsequent use in expressions or scriptlets. (See below.)
The tags commence with <%! and end with %>.

Examples

<%! int visitCount; %>
<%! Date today = new Date(); %>

Such declarations refer to instance variables of the servlet class that will be created
from this JSP and will be recognised within any subsequent JSP tags on the page.

• Expressions

These tags are used to specify Java expressions, the values of which will be
calculated and inserted into the current page. Such an expression can involve any
valid combination of literals, variables, operators and/or method calls that returns a
value that can be displayed on a Web page. The tags commence with <%= and end
with %>.

Examples

<%= origPrice*(1+VAT) %>
<%= today.getMonth() %>

282 An Introduction to Network Programming with Java

Not that, unlike declarations (and scriptlets below), an expression must not be
terminated with a semi-colon

• Scriptlets

Scriptlets are blocks of Java code that are to be executed when the JSP is called up.
It is possible to include large amounts of code via this method, but that would not be
good practice. As noted in section 9.1, such code should be kept to a minimum. It
will be seen in the latter part of the next chapter that the bulk of such processing may
be encapsulated within a JavaBean, the methods of which may then be called from
the JSP. Methods of the standard Java classes may also be called, of course.
Scriptlets tags commence with <% and end with %>.

Example

<%
 //'total' and 'numArray' are pre-declared.
 total = 0;
 for (int i=0; i<numArray.length; i++)
 total+=numArray[i];
%>
Total:
<%= total %>

The value of any output may be varied according to whether a particular condition is
true or not.

Example

<%
 if today.getHours() < 12
 {
%>
Good morning!
<%
 }
 else
 {
%>
Good afternoon!
<%
 }
%>

Declarations may also be made within scriptlets and will be recognised within any
subsequent JSP tags on the page.

JavaServer Pages (JSPs) 283

• Comments

These are similar to HTML comments, but are removed from the page before it is
sent to the browser. They commence with <%-- and end with --%>.
Example

 <%-- Search algorithm --%>

Such tags are effective for only one line, so multi-line comments necessitate the
repeated use of these tags.

Example

 <%-- Search algorithm --%>
 <%-- Implements Quicksort --%>

• Actions

Action tags perform various functions that extend the standard capabilities of JSPs,
such as making use of JavaBeans. The opening tag specifies a library and an action
name, separated from each other by a colon. The closing '>' is preceded by a
forward slash ('/').

Example

<jsp:useBean id="manager" class="staff.Personnel"
scope="session" />

The reference to useBean and associated attributes here indicates the use of a
JavaBean. (There will be extensive coverage of JavaBeans in the next chapter.)

9.4 Implicit JSP Objects

To provide the flexibility required by dynamic Web sites, a JSP-aware Web server
automatically makes available a number of objects that may be used by JSPs without
explicit declaration. There are nine such objects, as shown in Table 9.1. These
implicit objects are instances of the classes defined by the servlet and JSP
specifications. The last three objects are very rarely used. Variable out is also not
often required.

ServletContext is an interface implemented by each servlet engine that provides a
servlet with methods that allow it to find out about its environment (independent of
any individual session). This interface has two methods that mirror the Session
class's methods getAttribute and setAttribute. The two methods have names,
arguments and return types that are identical to those of the corresponding Session
methods. The signatures for these methods are repeated below.

284 An Introduction to Network Programming with Java

• public Object getAttribute(String <name>)
• public void setAttribute(String <name>,
 Object <attribute>)

Variable Type Purpose
request HttpServletRequest Http request originally sent

to server.
response HttpServletResponse Http response to request.
session HttpSession Session object associated

with the above request and
response.

application ServletContext Holds references to other
objects that more than one
user may access, such as a
database link.

out JspWriter Object that writes to the
response output stream.

exception Throwable Contains information about a
runtime error and is available
only on error pages.

pageContext PageContext Encapsulates the page
context.

config ServletConfig ServletConfig object for this
JSP.

page Object The this object reference in
this JSP.

As shown in Table 9.1, the implicit object application is the ServletContext object
that is created automatically for a JSP and allows the programmer to retrieve and set
environment-level properties via the two methods above.
 In the examples below, note the need for typecasting with getAttribute, since it
returns an Object reference.

Examples

 String userName =
 (String)application.getAttribute("name");

 Float balanceObject =
 (Float)application.getAttribute("balance");

 setAttribute("total", new Integer(0));

 Table 9.1 The implicit JSP objects

JavaServer Pages (JSPs) 285

Other methods of object application that are sometimes useful are listed below and
have purposes that are self-evident.

• public Enumeration getAttributeNames()
• public void removeAttribute(String name)

9.5 Collaborating with Servlets

Since servlets are often used in combination with JSPs, it is useful to consider the
methods that can be made use of to allow the two to collaborate easily. The two
major ways in which servlets and JSPs may wish to share information are the
sharing of data related to an individual user's session and the sharing of data related
to the application environment that is applicable to all users who visit the site. For
JSPs, these two categories of information are provided by the implicit objects
session and application respectively. We need to consider what objects will supply
the same information via servlets and how this information may be passed between
servlets and JSPs. It turns out that this is considerably easier than might at first be
thought.
 If a Session object has already been created by a servlet (in the same session)
when a JSP is referenced, then the JSP implicit object session will contain any
attribute-value pairs that were placed in the original Session object. Thus, object
session may simply use its getAttribute method to retrieve any information stored by
the servlet.

Class HttpServlet implements interface ServletConfig through its superclass,
GenericServlet. This interface has a method called getServletContext that returns a
ServletContext reference. In order to gain read/write access to environment-level
information, then, a servlet first calls this method and stores the ServletContext
reference that is returned. It then invokes methods getAttribute and setAttribute on
the ServletContext reference, in the same way that those methods are invoked on the
implicit object application in JSPs.

Example

 ServletContext context = getServletContext();
 String userName =
 (String)context.getAttribute("name");

Analogous to the situation with the sharing of session information, the object
application created when the JSP is first referenced will automatically contain any
attribute-value pairs that have been set up previously by a servlet.

9.6 JSPs in Action

Now that the basic structure of a JSP has been explained and the allowable contents
identified, it is time to look at an example JSP application. To illustrate how JSPs

286 An Introduction to Network Programming with Java

may be used in collaboration with servlets, rather than having the dynamic content
of a Web site provided entirely via servlets, the shopping cart example from the
previous chapter will be re-implemented.

Example

The initial page will be renamed ShoppingCartX.html. The only change required for
this page is the address for the form's ACTION attribute. Instead of specifying a
servlet called Selection, this will now specify a JSP called Selection.jsp:

 <FORM METHOD=POST ACTION="Selection.jsp">

The code for Selection.jsp is shown below, with JSP-specific content shown in bold.
Note that, if the 'Checkout' option is selected by the user, control is now re-directed
to another JSP (viz., Checkout.jsp), rather than to servlet Checkout. Note also how
use is made of the implicit object session to store the value of the current product,
without the necessity for creating a Session object explicitly (as was the case in the
selection servlet).
 In the servlet-only version of this application, control is then passed to a Weight
servlet. Since this servlet's activities consist entirely of background processing and
re-direction to the next appropriate page, with no Web page output being generated,
this is an ideal opportunity for keeping the servlet. There are one or two minor
changes that need to be made to this servlet (as will be identified shortly) and the
modified servlet will be named WeightX. The reference to this servlet is also shown
in bold type below.

<!-- Selection.jsp -->

<%
 String currentProduct;

 currentProduct = request.getParameter("Product");
 if (currentProduct.equals("Checkout"))
 response.sendRedirect("Checkout.jsp");
 else
 session.setAttribute(
 "currentProd",currentProduct);
%>

<HTML>

 <HEAD>
 <TITLE><%= currentProduct %></TITLE>
 </HEAD>

 <BODY>
 <CENTER>
 <H1><%= currentProduct %>

JavaServer Pages (JSPs) 287

 </H1>

 <FORM METHOD=POST ACTION="WeightX">

 <TABLE>
 <TR>
 <TD>Quantity required (kg)

 <INPUT TYPE='Text' NAME=Qty VALUE=''
 SIZE=5></TD>
 </TR>
 </TABLE>

 <TABLE>

 <TR>
 <TD><INPUT TYPE='Radio' NAME='Option'
 VALUE='Add' CHECKED>

 Add to cart.
 </TD>
 </TR>

 <TR>
 <TD><INPUT TYPE='Radio' NAME='Option'
 VALUE='Remove'>

 Remove item from cart.
 </TD>
 </TR>

 <TR>
 <TD><INPUT TYPE='Radio' NAME='Option'
 VALUE='Next'>

 Choose next item.
 </TD>
 </TR>

 <TR>
 <TD><INPUT TYPE='Radio' NAME='Option'
 VALUE='Checkout'>

 Go to checkout.
 </TD>

288 An Introduction to Network Programming with Java

 </TR>

 </TABLE>

 <INPUT TYPE='Submit' VALUE='Submit'>

 </FORM>
 </CENTER>

 </BODY>

</HTML>

The only lines in the original Weight servlet requiring change are the class header
line and those lines specifying URLs. The changed lines (with changes indicated in
bold) are shown below.

public class WeightX extends HttpServlet

response.sendRedirect("ShoppingCartX.html");

(There are three occurrences of the above line.)

response.sendRedirect("Checkout.jsp");

File WeightX.java, which encapsulates this servlet, will need to be compiled before
running the application, of course.

Finally, we come to the code for the JSP corresponding to the Checkout servlet
(which, naturally enough, will be named Checkout.jsp). There is an irritating
problem with the decimal formatting that we need to overcome here. We can't use
either printf (a method of the PrintStream class) or format (a method of the
PrintWriter class), since we have neither a PrintStream object nor a PrintWriter
object that we can use. Consequently, we shall have to create an instance of the
DecimalFormat class and make use of its format method, supplying it with a string
argument that will specify the formatting template that we wish to apply to the costs
in our checkout table.
 Since the DecimalFormat class is in package java.text we shall make use of the
import attribute of the JSP directive page. We shall also make use of this
attribute to access the Enumeration class (from package java.util), since this is the
type of reference returned by the Session class's getAttributeNames method. As in
Selection.jsp, use will be made of the implicit JSP object session, rather than a
Session object that has been created explicitly by this application. Once again, the
JSP-specific code is shown in bold type...

<!-- Checkout.jsp -->

<%@ page import="java.util.Enumeration"
 import="java.text.DecimalFormat" %>

JavaServer Pages (JSPs) 289

<%
 final float APPLES_PRICE = 1.45F;
 final float PEARS_PRICE = 1.75F;
 //In a real application, the above prices would be
 //retrieved from a database, of course.
%>

<HTML>

 <HEAD>
 <TITLE>Checkout</TITLE>
 </HEAD>

 <BODY>

 <CENTER>

 <H1>Order List</H1>

 <TABLE BGCOLOR=Aqua BORDER=2>
 <TR>
 <TH>Item</TH>
 <TH>Weight(kg)</TH>
 <TH>Cost(£)</TH>
 </TR>

<!-- Now make use of the implicit object session -->
<!-- to retrieve the contents of the shopping cart... --
>
<%
 session.removeAttribute("currentProd");
 //(Removes "Checkout".)

 Enumeration prodNames = session.getAttributeNames();
 float totalCost = 0;
 DecimalFormat costFormat =
 new DecimalFormat("00.00");

 int numProducts = 0;
 while (prodNames.hasMoreElements())
 {
 float wt=0,cost=0;
 String product = (String)prodNames.nextElement();
 String stringWt =
 (String)session.getAttribute(product);
 wt = Float.parseFloat(stringWt);

290 An Introduction to Network Programming with Java

 if (product.equals("Apples"))
 cost = APPLES_PRICE * wt;
 else if (product.equals("Pears"))
 cost = PEARS_PRICE * wt;
%>
 <TR>
 <TD><%= product %></TD>
 <TD><%= wt %></TD>
 <TD><%= costFormat.format(cost) %></TD>
 </TR>
<%
 totalCost+=cost;
 numProducts++;
 }
%>
 <TR BGCOLOR=Yellow>
<%
 if (numProducts == 0)
 {
%>
 <TD>*** No orders placed! ***</TD>
 </TR>
<%
 }
 else
 {
%>
 <TR BGCOLOR=Yellow>
 <TD></TD> <!-- Blank cell -->
 <TD>Total cost:</TD>
 <TD><%= costFormat.format(totalCost) %></TD>
 </TR>
<%
 }
%>
 </TABLE>
 </CENTER>

 </BODY>

</HTML>

Actually, there is really more Java code here than there should be in any JSP. The
material on the use of JavaBeans in JSPs in the latter part of the next chapter should
serve to demonstrate how this problem may be solved.

JavaServer Pages (JSPs) 291

9.7 Error Pages

In common with other network software, JSPs can generate errors for a variety of
reasons, even when all syntax errors have been eradicated. For example, a database
connection can fail or the user can enter invalid data. Ideally, our software should be
able to handle such situations in a graceful manner by supplying a meaningful
message for the user and, if possible, providing him/her with a way to recover from
the situation (possibly by re-entering data). As things stand at present in our
shopping cart application, the generation of an exception by our code will result in a
non-helpful error page being served up by Tomcat in the user's browser (often, but
not always, relating to error 500). In fact, some JSP containers do not even provide
this much assistance to the user.

Consequently, instead of relying upon the error-handling facilities provided by the
JSP container (which will not be user-orientated), we should try to handle exceptions
gracefully in our own code. We could use a servlet to build up an error page and
redirect control to this page, but this is not necessary. A way of handling errors is
provided by the JSP specification in the form of programmer-designated error pages,
the contents of which are created by the programmer. To associate an error page
with the current JSP, we make use of an attribute of the page directive that we have
not yet encountered: errorPage. For example:

 <%@ page errorPage="MyErrorPage.jsp" %>

To illustrate the use of such a page, the AdderServlet from Chapter 8 will now be
converted into a JSP. As in previous examples, all JSP-specific code will be
emboldened.

Example

Note the specification of the associated error page in the second line of code below.

<!-- Adder.jsp -->
<%@ page errorPage="NumError.jsp" %>

<%
 String value1 = request.getParameter("Num1");
 String value2 = request.getParameter("Num2");
 int num1 = Integer.parseInt(value1);
 int num2 = Integer.parseInt(value2);
 int sum = num1 + num2;
%>
<HTML>
 <HEAD>
 <TITLE>Result</TITLE>
 </HEAD>
 <BODY>

292 An Introduction to Network Programming with Java

 <CENTER><H1>
 <%= "Result = " + sum %>
 </H1></CENTER>
 </BODY>
</HTML>

The initial Web page (originally called SimpleAdder.html) will need to have the
URL of its form's ACTION attribute modified so that it refers to our JSP, of course:

 <FORM METHOD=POST ACTION="Adder.jsp">

This opening file will itself be renamed SimpleAdderX.html.
 All that remains now is to specify the code for the error page itself. This file must
use attribute isErrorPage of the page directive to specify its error page status.
This attribute is a Boolean value and should be set to the value true, specified as a
string (i.e., enclosed by speech marks):

 <%@ page isErrorPage="true" %>

In this simple application, it is highly likely that the error that has been generated
has been caused by the user entering invalid (i.e., non-numeric) data. This being the
case, all that we really want to do is display an appropriate error message and then
give the user the opportunity to re-submit the data. However, this program will also
be used to illustrate the use of the implicit JSP object exception (shown in Table 9.1
of section 9.4). Though this object would normally be used only within the internal
processing of our JSP, we shall make use of its toString method to display the name
of the exception that has been generated. (This is unlikely to be of any interest to the
user, of course, and would not normally be included in JSP output.) As usual, all
JSP-specific code will be shown in bold text...

<!-- NumError.jsp -->

<%@ page isErrorPage="true" %>

<HTML>

 <HEAD>
 <TITLE>Error Page</TITLE>
 </HEAD>

 <BODY>

 <CENTER><H3>Data Entry Error

 <%= exception.toString() %>
 </H3>

 <FORM METHOD=GET ACTION="SimpleAdderX.html">

JavaServer Pages (JSPs) 293

 <INPUT TYPE="Submit" VALUE="Try again">
 </FORM>
 <CENTER>
 </BODY>

</HTML>

The output from SimpleAdderX.html and Adder.jsp will be exactly the same as that
generated by SimpleAdder.html and AdderServlet respectively, of course. Such
output is illustrated in Figures 8.5 and 8.6 of the previous chapter. An example of
the output generated by NumError.jsp when the user enters a non-numeric value is
shown in Figure 9.1.

 Figure 9.1 JSP error page output.

*** Warning! ***

When Internet Explorer 5.5 onwards is used with Tomcat 5 onwards, the default
action for the browser when it receives an HTTP 500 error code ('Internal server
error') is to display its own (rather unhelpful!) error page, rather than displaying the
JSP error page. In order to correct this default action, it is necessary to amend the
settings in Explorer as indicated below.

1. Select Tools->Internet Options from Explorer's menus.
2. Select the Advanced tab.
3. Scroll down the list of settings to locate 'Show friendly HTTP error messages'.
4. Untick (!) this option and click on OK.

294 An Introduction to Network Programming with Java

Your JSP error pages should work fine after this.

9.8 Using JSPs to Access Remote Databases

One very powerful and increasingly popular application of JSPs is to provide Web
access to databases. This can be done (via JDBC) in several ways:

• by placing the required Java statements into the JSP (producing an
excessive amount of Java code in the JSP);

• by defining custom action tags (not covered in this text);
• by employing JavaBeans (probably the best way).

Since JavaBeans are not covered until the next chapter, it is not appropriate to
describe the technique here. However, most of the latter part of the next chapter is
devoted to the use of JavaBeans within JSPs, with the accessing of databases being
used as the central vehicle for illustration.

JavaServer Pages (JSPs) 295

Exercises

For the exercises below, it would be appropriate to create one or more Web
applications. (One would be quite sufficient, but you might choose to create a
separate one for each exercise.)

9.1 Write a JSP that simply displays the current date and time when it is opened.

9.2 Create a simple HTML page containing a single button that takes the user to a
JSP called Count1.jsp. Now create a JSP with this name that uses a session
variable (i.e., an attribute set up by object session) to display the number of
times that the user has visited the page during this session. Add a button that
takes the user back to the HTML page.

9.3 Extend Count1.jsp (copying and renaming it as Count2.jsp?) so that the
application object is used to display the total number of times that the page has
been visited by anybody (in all sessions). If you use a name for the JSP that is
different from the one used in the previous question, remember to modify the
initial HTML page (copying and renaming it?) so that pressing the button takes
the user back to the correct JSP. When testing this program, open up two
browser windows and observe the difference between the two counts in each
pair and the difference between the contents of the two windows.

9.4 There is now too much Java code in the JSP of the previous exercise and this
should really be moved to a servlet. Introduce a servlet that will do the
background processing and then redirect control to the (reduced) JSP.

9.5 Re-write PersonalServlet (and its associated HTML page) from Chapter 8 so
that a JSP is used instead of the servlet. (Use the implicit object request.)

9.6 Create an error page for the above JSP that displays a meaningful error message
and allows the user to re-enter his/her name if no name was entered initially.
Modify the original JSP so that (a) it registers the error page and (b) it throws a
general Exception object if no name is entered by the user. (Once again,
remember to modify the original HTML page to reflect any name change in
your JSP.)

9.7 Re-write AdderServlet (and its associated HTML page) from Chapter 8 so that a
JSP is used instead of the servlet. Create an error page that displays a
meaningful error message if non-numeric data is entered and allows the user to
re-enter the values.

9.8 (i) Create three Exception classes (using extends Exception) that
correspond respectively to the following error situations:

• the first of the operands in the preceding exercise being non-numeric;
• the second being non-numeric;
• both being non-numeric.

296 An Introduction to Network Programming with Java

 Give these classes empty constructor bodies, define the toString method for
each to return a meaningful error message and place the classes in a package
called errorExceptions. Create a subdirectory of classes called errorExceptions
and save these Exception classes (at least the .class files) into this directory.

 (ii) Modify the JSP of the preceding exercise so that it imports package

errorExceptions and throws an object of one of the three Exception classes just
defined, according to whether the first operand, the second operand or both
is/are non-numeric. (This involves some interesting logic that includes nested
try blocks.) If you are going to change the name of your error page (which
will require modification, as noted below), remember to change its name in this
JSP's page directive.

 (iii) Modify the associated JSP error page so that it makes use of the toString
method of the implicit exception object (if it didn't already do so) and allows
return to the correct JSP.

10 JavaBeans

Learning Objectives
After reading this chapter, you should:

• understand the rationale behind JavaBeans;
• appreciate the potential offered by JavaBeans;
• know how to access and use the Bean Builder;
• know how to create a JavaBean and how to expose selected properties of

the bean;
• know how to use a JAR file to package a JavaBean and its associated

files;
• know how to use a packaged bean in the Bean Builder;
• know how to cause changes in one bean's properties to have automatic

effects on other beans;
• know how to make use of beans in an application program;
• know how to make use of beans in JSPs, both via direct invocation of

bean methods and via HTML tags.

For a number of years, one of the primary goals of software engineering has been to
create and make use of general-purpose software components that may be ‘plugged’
into a variety of applications. The internal workings of such components are hidden
from the application developer and are of no concern to him/her. The only things
that the developer needs to know are what purpose the component serves and what
interface it provides (i.e., what parameters need to be passed to the component and
what value(s) the component will return). The major advantages of such components
are fairly obvious:

• greatly reduced time and expense for software development, as
developers reuse software and avoid ‘reinventing the wheel’;

• much more reliable software (since the reused components will generally
have been used in many other applications and will be ‘tried and tested’).

One of the most well known and widely used component models is Microsoft’s
ActiveX. Powerful though its capabilities are, it has one major drawback: it is
dependent upon the MS Windows platform (though moves have been made to
alleviate this situation). Java provides a platform-independent alternative to this with
its JavaBeans component model
 JavaBeans was introduced into Java with JDK1.1. In recognition of the fact that
other component models were already in existence, the designers of Java tried to
ensure that JavaBeans components were interoperable with components designed
under these other models. A notable example of this attempt is the ActiveX bridge,
which can be used to convert a JavaBean into an ActiveX component that can then

298 An Introduction to Network Programming with Java

be used on a Windows platform. (In addition, Microsoft has opened up the ActiveX
technology to development in a range of languages, including Java.)
 An individual JavaBeans component is often referred to as a JavaBean or simply a
'bean'. Before we look at the construction of JavaBeans, it will help in the
understanding of what JavaBeans are and how useful they can be by pointing out an
important fact that concerns most of the classes that we have used in our GUI
programs: all Swing and AWT components are JavaBeans. GUI components
make ideal JavaBeans, since they are required in a vast number of applications and
would necessitate an enormous amount of tedious, repetitive coding if they did not
exist. In keeping with the component technology ethos, the application programmer
needs to know nothing of the internal workings of such components. All that he/she
needs to know are what method names and arguments must be supplied and what
values are returned by those methods.

10.1 Introduction to the Bean Builder

The core classes and interfaces of the JavaBeans model are contained in packages
java.beans and java.beans.beancontext. Developers make use of bean methods that
have been exposed by each bean's designer and form the bean’s interface to the
outside world. Sun originally provided a rudimentary, but occasionally useful, tool
called the JavaBeans Development Kit (otherwise known as the BDK), at the heart
of which was a bean container called the BeanBox that could be used to develop
beans. As of sometime in 2003, the download facility for this tool disappeared and
was replaced with that for another bean development tool called the Bean Builder,
for which the beta release of version 1.0 first appeared in January 2002. To quote
from the wording of the Sun site, this product “extends the capabilities of the
original BeanBox by demonstrating new technologies for persistence, layout editing
and dynamic event adapter generation”.
 As has been made quite clear on the Sun site, neither of these tools was ever
intended for use as a production-quality development tool. Commercial builder tools
such as IBM's Websphere Studio Application Developer provide such full-blown
development environments. Probably because of this, the Bean Builder (like the
BDK before it) has remained in a static state since its introduction. In spite of this, it
can be useful as a demonstration tool or as a quick and simple means of testing the
functionality of a packaged bean. Since no serious development may be carried out
via the Bean Builder, only the early sections of this chapter will make use of this
tool. To download the Bean Builder, execute the steps given below.

1. Go to https://bean-builder.dev.java.net. (There is no need to register on this
page.)

2. Scroll down the page and click on the Bean Builder link within the bullet point
'Launch the Bean Builder using Java WebStart)'.

3. Confirm in the warning dialogue box that you wish to accept the download.

4. Confirm that you wish the tool to be integrated into your desktop environment.

JavaBeans 299

Once step 4 above has been executed, the Bean Builder will be downloaded,
unzipped and installed, after which it will automatically start itself running. As it
does so, three windows appear, as shown in Figure 10.1. These windows are (from
the top and moving in an anti-clockwise direction):

• the Control Panel;
• the Property Inspector;
• the Design window.

 Figure 10.1 Windows within the Bean Builder environment.

 The palette in the middle of the Control Panel has three tabs that allow the user to
select from a range of GUI components. User-designed beans, as you will see later,
may be added via the Load Jar File option of the File menu. When the user clicks
on one of the components on the palette, the mouse cursor changes to cross-hairs.
Moving across to the Design window (the bottom right window) and pressing the
mouse's right button (without releasing it) selects the starting position of the
component. Dragging with the mouse and then releasing the right button allows the
component to be sized. Clicking on the component at any time causes ten small
white squares and four grey/black ones to appear on the component. The central
white square may be used for moving the component, whilst the remaining nine
white squares are used for re-sizing. The four grey 'event hookup handles' (as they
are called) are used for connecting components so that an event generated by one
may spark off an action on the other. This will be demonstrated at a later stage. To
remove a bean from the Design window, click on the bean and press the Delete key.
 The Property Inspector shows the properties of the currently selected bean at all
times. Since the Design window itself is a JPanel, it is a bean. When the Bean

300 An Introduction to Network Programming with Java

Builder environment opens up, it is the Design window that is selected, with its
properties displayed. Property values may be changed by clicking on the rectangle at
the side of the relevant property and then selecting/entering a new value.

Once the user has created his/her desired configuration of beans in the Design
window, he/she may test the operation of the configuration by unticking the 'Design
Mode' checkbox in the bottom right corner of the Control Panel. This will cause the
Design window to move to the top left corner of the screen and the components to
be rendered, so that the configuration may be tested. The bean design may be saved
in the Bean Builder, but will be saved as an XML file, not as a Java file. In order for
the program to exit when its window is closed, the defaultCloseOperation should
have been set to EXIT_ON_CLOSE in the Property Inspector. There are two ways of
re-displaying a program created within the Bean Builder, as listed below.

1. Select File->Open in the Bean Builder and then navigate to the XML file.

2. Use an XMLDecoder object in a simple Java program to render the XML code.

An example of the latter option is shown below.

import java.awt.*;
import javax.swing.*;
import java.io.*;
import java.beans.*;

public class BuilderDemo extends JFrame
{
 public static void main(String[] args)
 {
 new BuilderDemo();
 }

 public BuilderDemo()
 {
 try
 {
 BufferedInputStream inStream =
 new BufferedInputStream(
 new FileInputStream("bean.xml"));

 XMLDecoder decoder = new XMLDecoder(inStream);
 decoder.readObject();
 }
 catch (FileNotFoundException ex)
 {
 System.out.println("XML file not found!");
 }
 }
}

JavaBeans 301

This code is included with the other examples from this book on the accompanying
disc. A simple XML file called bean.xml is also included for the above program to
use and simply causes a JLabel, a JTextField and a JTextArea to be displayed (with
no action).

10.2 Creating a JavaBean

A bean class has the same basic structure as an ordinary Java class, but with the
particular characteristics listed below.

1. It must be within a named package (and so within a folder of the same name).
2. Each (non-library) public method should begin with either 'get' or 'set'.
3. It should implement the Serializable interface (which has no methods).
4. It does not usually have a main method, but will have if some initial activity is

required.

There are three basic steps in the creation of a bean, as stated below.

1. Write the program code for the required bean functionality (ensuring that the
bean class implements the Serializable interface).

2. Add any accessor and mutator ('get' and 'set') methods required to allow users to
examine/change properties.

3. Compile the bean and possibly wrap it (and any required resource files) in a JAR
(Java Archive) file. The latter operation is only really necessary if the bean is
going to be 'fed' into an IDE.

Consideration of 'get' and 'set' methods will be postponed for the time being while
we consider a JavaBean that (initially) makes no use of these methods.

Example

To make things a little more interesting than they might otherwise be, we'll set up a
bean to run an animation that involves the Java mascot 'Duke' juggling some
peanuts. A separate thread could be set up to handle the animation, but it is
convenient to make use of an object of class Timer (a Swing class). Since the reader
may be unfamiliar with aspects of this technique, a little time will be taken to
explain the basic steps...

The Timer object takes two arguments:

• an integer delay (in milliseconds);
• a reference to an ActionListener.

The Timer object automatically calls method actionPerformed at intervals prescribed
by the above delay. The ActionListener can conveniently be the application
container itself, of course. Inside the actionPerformed method will simply be a call
to repaint, which automatically calls method paint (which cannot itself be called

302 An Introduction to Network Programming with Java

directly). Each time that paint is called, it will display the next image from the
sequence of frames making up the animation. Inbuilt methods start and stop will be
called to start/stop the Timer.

The bean application class upon which the images will be displayed will extend
class JPanel. the images themselves will be held in ImageIcons and paint will
display an individual image by calling ImageIcon method paintIcon on an individual
image. This method takes four arguments:

• a reference to the component upon which the image will be
displayed (usually this, for the application container);

• a reference to the Graphics object used to render this image
(provided by the argument to paint);

• the x-coordinate of the upper-left corner of the image's display
position;

• the y-coordinate of the upper-left corner of the image's display
position.

There are a couple of final points to note before we look at the code for this
example:

• class JPanel (through class JComponent) implements Serializable,
so there is no need to specify implementation of this interface
explicitly here;

• the BeanBox takes the size of the bean from method
getPreferredSize of class Component, which takes a Dimension
argument specifying the container's width and height.

Now for the code…

package animBeans;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class AnimBean1 extends JPanel
 implements ActionListener
{
 private ImageIcon[] image;

 private String imageName = "juggler";
 /*
 The above string forms the first part of the name for
 each image in the sequence. Appended to this will be
 an integer in the range 0-3, followed by the suffix
 '.gif' (so names will be 'juggler0.gif', ...,
 'juggler3.gif').

JavaBeans 303

 */

 private final int NUM_FRAMES = 4;

 private int currentImage = 0;
//Holds no. of current frame.

 private final int DELAY = 100; //100/1000sec = 0.1sec
 //(May need to be adjusted for different processors.)

 private Timer animTimer;

 public static void main(String[] args)
 {
 AnimBean1 anim = new AnimBean1();

 //If panel size is set here,
 //the Bean Builder ignores it!!!

 anim.setVisible(true);
 }

 public AnimBean1()
 {
 //Set up array of images...
 image = new ImageIcon[NUM_FRAMES];

 for (int i=0; i<image.length; i++)
 {
 image[i] =
 new ImageIcon(imageName + i + ".gif");
 }

 animTimer = new Timer(DELAY,this);

 //Call inbuilt method start of Timer object...
 animTimer.start();
 }

 public void paint(Graphics g)
 {
 //Display next frame in sequence...
 image[currentImage].paintIcon(this,g,0,0);

 //Update number of frame to be displayed, in
 //preparation for next call of this method...
 currentImage = (currentImage+1)%NUM_FRAMES;
 }

304 An Introduction to Network Programming with Java

 public void actionPerformed(ActionEvent event)
 {
 repaint();
 }

 public Dimension getPreferredSize()
 {
 //This is the method from which the application
 //panel gets its size...
 return new Dimension(140,120);
 }
}

Having created and compiled the above code, we now need to package the bean
(and any required GIF files) within a JAR file, so that the bean may be loaded into
the Bean Builder. JAR files are compressed by default, using the same format as ZIP
files. To do the packaging, we make use of J2SE's jar utility. The syntax for
executing this utility is:

 jar <options> [<manifest>] <JAR_file> <file_list>
(Note that the order of parameters is not fixed. In particular, the second and third
parameters may be reversed.)

The third parameter specifies the name of the JAR file, which will normally have the
.jar extension. The final parameter specifies the files that are to go into this JAR file.
The second parameter specifies the name of a manifest file that will hold
information about the contents of the JAR file. The manifest is normally a very short
text file. Though optional, it is good practice to include it, since it provides the user
with an easy way of finding out the contents of the JAR file without actually running
the associated JavaBean. At the very least, the manifest will have two lines
specifying a bean class file by naming the file (via property Name) and stating
explicitly (via Boolean property Java-Bean) that the file holds a JavaBean.

Example

Name: beanPackage/MyBean.class
Java-Bean: True

Any other class files will also be listed, each separated from the preceding class by a
blank line.

Example

Name: beanPackage/MyBean.class
Java-Bean: True

Name: SupportClass1.class

JavaBeans 305

Name: SupportClass2.class
 (We could also have further beans in the same JAR file.)

If the bean contains a main method, the first line of the manifest will use a Main-
Class specifier to name the containing class, followed by a blank line. The manifest
for our animation bean is as follows:

Main-Class: AnimBean1

Name: animBeans/AnimBean1.class
Java-Bean: True

All that needs to be explained now before looking at full command lines that will
create JAR files is the meaning of the first parameter supplied to the jar utility (the
options parameter). 'Options' are single letters that appear consecutively. The
possible values for such options are c, f, m, t, v, x and 0. The meanings of these
values are shown in Table 10.1.

Option Meaning
c Create a new JAR file.

f
If combined with 'c', specifies that file to be created is
named on command line; if used with 't' or 'x', specifies
that an existing file is named.

m Use manifest file named on command line.
t List table of contents for JAR file.

v
'Verbose' output: generate additional output (file sizes,
etc.).

x
Extract file named on command line or, if none
specified, all files in directory.

0 Suppress compression of files.

 Table 10.1 Option values for the jar utility.

Examples

1. jar cmf MyManifest.mf MyBean.jar *.class
(Creates a JAR file called MyBean.jar containing all .class files in the current
directory and allocates manifest file MyManifest.mf to the JAR file.)

2. jar tf OldBean.jar
(Lists the contents of OldBean.jar.)

Assuming (i) that our manifest file is called AnimManifest1.mf, (ii) that we are
executing the jar utility from the folder that holds the manifest file, (iii) the bean
folder is immediately below the current folder and (iv) we wish to call our JAR file
Animation1.jar, the required command line is:

306 An Introduction to Network Programming with Java

jar cmf AnimManifest1.mf Animation1.jar animBeans\AnimBean1.class

Note the use of a backslash for the Windows platform here, but the use of a forward
slash in the manifest file! It is very easy to make a slip with this.
 Having packaged our bean, we can open up the Bean Builder (by double-clicking
on the Bean Builder 0_6 alpha that is now on the desktop), select Load Jar File.
from the File menu, navigate to Animation1.jar and then select this file. This will
cause a new tab labelled User to appear in the central section of the Control Panel,
upon which is a rectangle representing the bean, as shown in Figure 10.2.

Figure 10.2 Animation1.jar loaded into the Bean Builder.

This bean can then be selected in exactly the same way as any of the other beans on
the palette. However, in order for the animation to work when the bean is placed
upon the Bean Builder window, the GIF files for the animation must be on the
system PATH. (Packaging them inside the JAR file with the other files will not
work, because ImageIcon doesn't implement Serializable.) Figure 10.3 shows one
frame of the animation produced by placing an instance of the bean upon the Design
window when the associated GIFs are in the same directory as the JAR file. (It isn't
necessary to untick 'Design Mode' in order to see the animation. The only difference
that will be seen by unticking this checkbox is the disappearance of the four event
hookup handles around the animation.)

Figure 10.3 A frame from the juggler animation

JavaBeans 307

 Apart from the restriction of having to ensure that the associated GIFs are on the
system path, there is another drawback of the above procedure: the bean remains on
the palette only for the duration of the current session. (Unlike the former restriction,
this latter restriction applies also to non-animation beans.) To use the bean in a
subsequent session, it is necessary to reload it into the Bean Builder.

10.3 Exposing a Bean's Properties

The users of a bean may be given read and/or write access to the properties (data
values) of a bean via 'get' and 'set' (accessor and mutator) methods respectively that
are built into the design of the bean. For a property with name prop of type T, the
corresponding methods will have the following signatures:

• public T getProp()
• public void setProp(T value)

For example, if users of a bean with a property called colour are to be given read-
and-write access to this property, then the bean designer would provide methods
getColour and setColour as part of the bean's interface. If only read access is to be
granted, then only the former method would be made available. If prop is a Boolean
property, then method name isProp is used instead of getProp (and returns a
boolean value, of course). The Property window of the Bean Builder shows only
read-and-write properties, though some builder tools also expose read-only and
write-only properties.

Example

For purposes of illustration, we'll expose properties delay and imageName of our
animation bean, granting read-and-write access to both of these properties.
Implementation of methods getDelay, setDelay and getImageName is reasonably
straightforward, but the implementation of method setImageName requires the
erasing of the old image and the loading of frames for the new animation. Using our
previous program (AnimBean1.java) as our starting point, the additions and
modifications required to expose properties delay and imageName are shown in bold
below.
 In order for this program to work, the GIF files used in any animation sequence
must have names comprising a fixed string followed by an integer, with integer
values covering the range 0..n-1 for a sequence of n frames. (E.g., cartoon0,
cartoon1,.., cartoon5 for a sequence of six frames.)

package animBeans;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.File;

308 An Introduction to Network Programming with Java

public class AnimBean2 extends JPanel
 implements ActionListener
{
 private ImageIcon[] image;
 private String imageName = "juggler";

 private String oldImage = "juggler";
 //Need to save old image name so that code can
 //compare this with current image name and determine
 //whether user has changed image name.

 private int numFrames; //(No longer a constant.)
 private int oldNumFrames; //No. of frames in
 //previous image.
 private int currentImage = 0;
 private int delay = 100; //(No longer a constant.)
 private Timer animTimer;

 public static void main(String[] args)
 {
 AnimBean2 anim = new AnimBean2();
 anim.setVisible(true);
 }

 public AnimBean2()
 {
 //Loading of frames not done just once now, so
 //must be moved out of constructor...
 loadFrames();

 animTimer = new Timer(delay,this);
 animTimer.start();
 }

 private void loadFrames()
 {
 //Check no. of frames in animation first...
 numFrames = 0;
 File fileName =
 new File(imageName + numFrames + ".gif");
 while (fileName.exists())
 {
 //Increment frame count for each image in
 //sequence that is found...
 numFrames++;

 //Update filename to check for next frame in

JavaBeans 309

 //sequence...
 fileName =
 new File(imageName + numFrames + ".gif");
 }
 if (numFrames==0) //No image found!
 return; //Abandon loading of frames.

 //Following lines moved from constructor
 //(with no. of frames now variable)...
 image = new ImageIcon[numFrames];
 //Now load frames...
 for (int i=0; i<numFrames; i++)
 {
 image[i] =
 new ImageIcon(imageName + i + ".gif");
 }
 }

 public void paint(Graphics g)
 {
 //Check whether user has changed imageName
 //property...
 if (!imageName.equals(oldImage))
 {
 //Load new frame sequence...
 loadFrames();
 if (numFrames==0) //No image found!
 {
 //Reset image name and no. of frames
 //to their old values...
 setImageName(oldImage);
 numFrames = oldNumFrames;
 }
 else
 {
 oldImage = imageName;
 oldNumFrames = numFrames;

 //Retrieve background colour...
 g.setColor(getBackground());

 //Erase old image by filling old image area
 //with background colour...
 g.fillRect(0,0,getWidth(),getHeight());

 //Reset frame count to first frame in new
 //sequence...
 currentImage = 0;

310 An Introduction to Network Programming with Java

 }
 }
 if (numFrames>0)
 {
 image[currentImage].paintIcon(this,g,0,0);
 currentImage = (currentImage+1)%numFrames;
 }
 }

 public void actionPerformed(ActionEvent event)
 {
 repaint();

 }

 public String getImageName()
 {
 return imageName;
 }

 public void setImageName(String name)
 {
 //Simple assignment for this property...
 imageName = name;
 }

 public int getDelay()
 {
 return delay;
 }

 public void setDelay(int delayIn)
 {
 delay = delayIn;

 //Also need to reset Timer delay for
 //this property...
 animTimer.setDelay(delay);
 }

 public Dimension getPreferredSize()
 {
 return new Dimension(140,120);
 }
}

Using a manifest called AnimManifest2.mf and JAR file called Animation2.jar, the
command to package the above bean into a JAR file is:

JavaBeans 311

jar cmf AnimManifest2.mf Animation2.jar animBeans\AnimBean2.class

As with our initial bean, this bean can now be loaded into the Bean Builder and used
like any of the other beans listed. Figure 10.4 shows the new animation bean with its
properties window now showing the two new exposed properties, imageName and
delay (both now with different values, entered by the author into the Property
Inspector). Note that, in order for the properties to be changed, the <Return> key
must be pressed after entry of the new value. As you can see, the bean needs further
development, since the application panel does not resize itself for varying image
sizes.

 Figure 10.4 Exposing additional bean properties.

10.4 Making Beans Respond to Events

We can add some sophistication to our bean by introducing buttons that will allow
the user to have greater control over the operation of the bean. As an example of
this, we shall introduce buttons into our animation bean that will allow the user to
stop and restart the animation whenever he/she wishes. In order to support this
additional functionality, we shall have to introduce methods stopAnimation and
startAnimation that will be executed in response to the button presses. The former
will simply need to stop the Timer object, but the latter will need to check whether it
is the first time that the animation is being started. If it is, then the Timer object will
have to be created and started; if not, then the Timer method restart will have to be

312 An Introduction to Network Programming with Java

called if the animation is not currently running. The code for these two methods is
shown below.

 public void startAnimation()
 {
 //Check whether this is first time during current
 //run of program that animation is being run...
 if (animTimer == null)
 {
 //First run of animation, so set current frame
 //to first one in sequence, create Timer and
 //start Timer running...
 currentImage = 0;
 animTimer = new Timer(delay,this);
 animTimer.start();
 }
 else
 //Not first time that animation is being run,
 //so check that it is not still running...
 if (!animTimer.isRunning())
 //Not currently running, so safe to restart...
 animTimer.restart();
 }
 public void stopAnimation()
 {
 animTimer.stop();
 }

As well as adding these two methods, we shall need to replace lines

 animTimer = new Timer(delay,this);
 animTimer.start();

in the constructor with the following line:

 startAnimation();

We could manually code the buttons that are to call these two methods, but there
is no need to do this, since we can make use of JButtons from the Bean Builder
palette to control the stopping and starting. The steps required to do this are shown
below.

1. 'Drop' an animation bean and two JButtons onto the Design window.

2. Select the first button and change its text property (via the Properties window) to
'Start'.

3. Link one of the four event hookup handles on this button to one of the handles
on the animation.

JavaBeans 313

4. In the event selection window that has now opened up, select Next> to confirm
actionPerformed as the required method.

5. Select startAnimation from the target method selection window and click on
Next>.

6. Click on the Finish button.

7. Repeat the last three steps with the second button, this time using a label of 'Stop'
and associating a press of this button with method stopAnimation.

8. Deselect design mode by unticking the checkbox.

9. Test the use of these buttons with the animation.

The modified code was packaged inside a JAR file with the name Animation3.jar
(following the same procedure that was used for Animation1.jar and Animation2.jar)
and loaded into the Bean Builder. The above steps were then executed.

Figure 10.5 shows the event selection window that appears after step 3 above.

Figure 10.5 Event method selection after first JButton connected to animation.

Figure 10.6 shows target selection method window in the middle of step 6, whilst
Figure 10.7 shows the Design window after step 7.

314 An Introduction to Network Programming with Java

Figure 10.6 After actionPerformed method set to call startAnimation.

Figure 10.7 After 'Start' and 'Stop' buttons linked to animation bean.

JavaBeans 315

 So far, we have used our beans only within the artificial environment of the Bean
Builder. The next section shows how they may be incorporated into application
programs.

10.5 Using JavaBeans within an Application

Once a bean has been created and compiled, we can use it as we would any GUI
component (though the program using it need not be a GUI). We should import the
bean class explicitly, of course.

Example

This example simply places an instance of AnimBean1 [See earlier part of this
chapter] onto the application frame, whereupon the juggler animation commences.
Remember that the required GIF files must be on the system PATH.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import animBeans.AnimBean1; //Note this inclusion.

public class AnimBeanApp1 extends JFrame
{
 public static void main(String[] args)
 {
 AnimBeanApp1 frame = new AnimBeanApp1();

 frame.setSize(150,150);
 frame.setVisible(true);

 frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
 }

 public AnimBeanApp1()
 {
 AnimBean1 sequence = new AnimBean1();

 //Add the bean to application frame...
 add(sequence);
 }
}

The resultant output is shown in Figure 10.8.

 As an enhancement of this, we can make use of the ‘set’ methods in AnimBean2 to
change the animation images and/or animation delay...

316 An Introduction to Network Programming with Java

Figure 10.8 JavaBean animation running in a GUI.

Example

This example employs an instance of AnimBean2 and two text fields. It allows the
user to change the animation sequence and/or the frame delay via the text fields, by
calling the bean’s setImageName/setDelay method in response to the <Return> key
being pressed at the end of entry into one of the text fields.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import animBeans.AnimBean2;

public class AnimBeanApp2 extends JFrame
 implements ActionListener
{
 private AnimBean2 sequence;
 private JPanel speedControl, imageControl;
 private JLabel delayPrompt, imagePrompt;
 private JTextField delay, imageName;

 public static void main(String[] args)
 {
 AnimBeanApp2 frame = new AnimBeanApp2();

 frame.setSize(150,250);
 frame.setVisible(true);

 frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
 }

 public AnimBeanApp2()
 {
 sequence = new AnimBean2();
 speedControl = new JPanel();
 delayPrompt = new JLabel("Delay(ms): ");
 delay = new JTextField(4);

JavaBeans 317

 imageControl = new JPanel();
 imagePrompt = new JLabel("Image: ");
 imageName = new JTextField(8);

 add(sequence, BorderLayout.NORTH);
 speedControl.add(delayPrompt);
 speedControl.add(delay);
 delay.addActionListener(this);
 add(speedControl, BorderLayout.CENTER);

 imageControl.add(imagePrompt);
 imageControl.add(imageName);
 imageName.addActionListener(this);
 add(imageControl, BorderLayout.SOUTH);
 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == delay)
 {
 //<Return> key pressed at end of entry into
 //delay text field, so reset delay...
 int pause = Integer.parseInt(delay.getText());
 sequence.setDelay(pause);
 delay.setText("");
 }
 else
 {
 //<Return> key must have been pressed at end of
 //entry into image name text field, so change
 //animation...
 sequence.setImageName(imageName.getText());
 imageName.setText("");
 }
 }
}

Figure 10.9 shows the resultant output.

10.6 Bound Properties

A bound property causes the owner of the property (i.e., the component whose
property it is) to notify other JavaBeans when the value of the property changes,
potentially leading to changes within those beans. The values changed in these other
beans must be of the same type as that of the bound property. The relevant classes
to achieve this linkage are contained within package java.beans. The objects to be

318 An Introduction to Network Programming with Java

notified are registered as PropertyChangeListeners. A PropertyChangeSupport
object maintains a list of these listeners. The constructor for this object takes one
argument: the source bean. For example:

PropertyChangeSupport changeSupport =
 new PropertyChangeSupport(this);

In this example, the PropertyChangeSupport object has been created within the
source bean itself.

Figure 10.9 Modified JavaBean animation running in a GUI.

 The PropertyChangeSupport object notifies any registered listeners of a change in
the bound property via method firePropertyChange, which takes three arguments:

• a String, identifying the bound property;
• an Object, identifying the old value;
• an Object, identifying the new value.

Since the second and third arguments must be of type Object or a subclass of this
(i.e., an object of any class), any primitive value must be converted into an object by
the appropriate 'wrapper' class (Integer, Float, etc.). For example:

changeSupport.firePropertyChange(
 "boundProp",new Integer(oldVal),new Integer(newVal));

Execution of the above method causes PropertyChangeEvent objects to be generated
automatically (and transparently).

The changes in the source bean required to achieve all this are summarised in the
steps below.

1. Add the line : import java.beans.*;

JavaBeans 319

2. Create a PropertyChangeSupport object, using this as the single argument to the
constructor.

3. Define methods addPropertyChangeListener and
removePropertyChangeListener, specifying a PropertyChangeListener argument
and void return type.

 (Definitions of the above methods simply call up the corresponding methods of
the PropertyChangeSupport object, passing a listener argument.)

4. Extend the 'set' method for the bound property to call method
firePropertyChange.

Example

This is a further extension of our animation bean, using imageName as the bound
property. The code changes are shown in bold below.

package animBeans;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.File;
import java.beans.*;

public class AnimBean4 extends JPanel
 implements ActionListener
{
 private ImageIcon[] image;
 private String imageName = "juggler";
 private String oldImage = "juggler";
 private int numFrames;
 private int oldNumFrames = 0;
 private int currentImage = 0;
 private int delay = 100; //??
 private Timer animTimer;
 private PropertyChangeSupport changeSupport;

 public static void main(String[] args)
 {
 AnimBean4 anim = new AnimBean4();
 anim.setVisible(true);
 }

 public AnimBean4()
 {
 changeSupport = new PropertyChangeSupport(this);
 loadFrames();
 startAnimation();

320 An Introduction to Network Programming with Java

 }

 private void loadFrames()
 {
 //Check no. of frames first...
 numFrames = 0;
 File fileName =
 new File(imageName + (numFrames) + ".gif");
 while (fileName.exists())
 {
 numFrames++;
 fileName =
 new File(imageName + (numFrames) + ".gif");
 }
 if (numFrames==0) //No image found!
 return; //Abandon loading of frames.

 image = new ImageIcon[numFrames];
 //Now load frames...
 for (int i=0; i<numFrames; i++)
 {
 image[i] =
 new ImageIcon(imageName + (i+1) + ".gif");
 }
 }

 public void startAnimation()
 {
 if (animTimer == null)
 {
 currentImage = 0;
 animTimer = new Timer(delay,this);
 animTimer.start();
 }
 else
 if (!animTimer.isRunning())
 animTimer.restart();
 }

 public void stopAnimation()
 {
 animTimer.stop();
 }

 public void paint(Graphics g)
 {
 if (!imageName.equals(oldImage))
 {

JavaBeans 321

 loadFrames();
 if (numFrames==0) //No image found!
 {
 //Reset image name and no. of
 //frames to their old values...
 setImageName(oldImage);
 numFrames = oldNumFrames;
 }
 else
 {
 oldImage = imageName;
 oldNumFrames = numFrames;
 g.setColor(getBackground());
 g.fillRect(0,0,getWidth(),getHeight());
 currentImage = 0;
 }
 }
 if (numFrames>0) //Image exists.
 {
 image[currentImage].paintIcon(this,g,0,0);
 currentImage = (currentImage+1)%numFrames;
 }
 }

 public void actionPerformed(ActionEvent event)
 {
 repaint();
 }

 public String getImageName()
 {
 return imageName;
 }

 public void setImageName(String name)
 {
 String oldName = imageName;
 imageName = name;
 changeSupport.firePropertyChange(
 "imageName", oldName, imageName);
 }

 public int getDelay()
 {
 return delay;
 }

 public void setDelay(int delayIn)

322 An Introduction to Network Programming with Java

 {
 delay = delayIn;
 animTimer.setDelay(delay);
 }

 public Dimension getPreferredSize()
 {
 return new Dimension(140,120);
 }

 public void addPropertyChangeListener(
 PropertyChangeListener listener)
 {
 changeSupport.addPropertyChangeListener(listener);
 }

 public void removePropertyChangeListener(
 PropertyChangeListener listener)
 {
 changeSupport.removePropertyChangeListener(
 listener);
 }
}

 Though the BDK provided a menu option to bind a property in one bean to a
property (of the same type) in another bean, the Bean Builder does not. However, it
is a relatively simple matter to modify example AnimBeanApp2 from the previous
section to make use of the above bean, which is what the next example does.

Example

In this example, the application is going to act as a PropertyChangeListener, and so
must implement method propertyChange. The application frame must be registered
as a PropertyChangeListener for the bean by executing method
addPropertyChangeListener on the bean, supplying an argument of this. When the
String identifying the animation changes (i.e., when the value of property
imageName changes), a PropertyChangeEvent will be generated and method
propertyChange will be invoked. The simple action to be taken by this method will
be to change the title of the application frame to reflect the change in property
imageName. As usual, the changes from the original version of the program will be
shown in bold text.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.beans.*;
import animBeans.AnimBean4;

JavaBeans 323

public class AnimBeanApp3 extends JFrame
 implements ActionListener,PropertyChangeListener
{
 private AnimBean4 sequence;
 private JPanel speedControl, imageControl;
 private JLabel delayPrompt, imagePrompt;
 private JTextField delay, imageName;

 public static void main(String[] args)
 {
 AnimBeanApp3 frame = new AnimBeanApp3();

 frame.setSize(150,250);
 frame.setVisible(true);

 frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
 }

 public AnimBeanApp3()
 {
 sequence = new AnimBean4();
 sequence.addPropertyChangeListener(this);
 setTitle(sequence.getImageName());
 speedControl = new JPanel();
 delayPrompt = new JLabel("Delay(ms): ");
 delay = new JTextField(4);
 imageControl = new JPanel();
 imagePrompt = new JLabel("Image: ");
 imageName = new JTextField(8);

 add(sequence, BorderLayout.NORTH);
 speedControl.add(delayPrompt);
 speedControl.add(delay);
 delay.addActionListener(this);
 add(speedControl, BorderLayout.CENTER);

 imageControl.add(imagePrompt);
 imageControl.add(imageName);
 imageName.addActionListener(this);
 add(imageControl, BorderLayout.SOUTH);
 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == delay)
 {
 //<Return> key pressed at end of entry into
 //delay text field, so reset delay...

324 An Introduction to Network Programming with Java

 int pause =
 Integer.parseInt(delay.getText());
 sequence.setDelay(pause);
 delay.setText("");
 }
 else
 {
 //<Return> key must have been pressed at end
 //of entry into image name text field, so
 //change animation...
 sequence.setImageName(imageName.getText());
 imageName.setText("");
 }
 }

 public void propertyChange(PropertyChangeEvent event)
 {
 setTitle(sequence.getImageName());
 }
}

Figure 10.9 shows the display from the above program just after the image name has
changed from 'juggler' to 'poorpic'.

Figure 10.10 Title change illustrating use of a bound property.

10.7 Using JavaBeans in JSPs

10.7.1 The Basic Procedure

This is a powerful combination that can be used to add further dynamism to Web

JavaBeans 325

pages. In order to be used by a JSP, a bean must have a default (i.e., no-argument)
constructor. Within the JSP, any bean that is to be used is identified by an action tag
that specifies jsp as the library and useBean as the action name. Recall from the last
chapter that an action tag shows the bean's library and action name, separated by a
colon. Thus, the tag commences as follows:

<jsp:useBean

If the bean tag has no body (as is commonly the case), the closing angle bracket is
preceded by a forward slash:

 />

The bean tag must also specify the following attributes:

• id (name for individual bean);
• class (specifying both package and class).

For example:

 <jsp:useBean id="myAccount" class="bank.Account" />

In addition, there are three optional attributes:

• scope;
• type;
• beanName.

Only scope is of any real interest to us. This attribute specifies the access
to/availability of the bean and takes one of the following four values:

• page (actions and scriptlets on the same page – the default);
• request (all pages servicing the same user request);
• session (all requests during the same user session);
• application (all users of the application).

For example:

<jsp:useBean id="myAccount" class="bank.Account"
scope="session" />

 Recall that Tomcat has a folder called classes. For each bean that we wish to use
with a JSP, we should create a sub-folder of classes that has the same name as the
package that is to hold the bean. For instance, in the above example, directory bank
holds a bean called Account (within package bank) and directory bank is placed
inside classes. Once a bean has been placed inside a JSP, the ‘get’ and ‘set’ methods
of the bean may be used.

326 An Introduction to Network Programming with Java

 There is a great deal of scope for things to go wrong when using JavaBeans from
JSPs, so you should get used to seeing error pages. In addition to this, re-
compilation by the server (necessary after any change to the JSP, of course) is slow!
Re-loading of a pre-compiled JSP is fine, though. In addition, recall that it is not
necessary to stop and restart the server every time a change is made to a JSP (as it
was with servlet changes in Chapter 8).

10.7.2 Calling a Bean's Methods Directly

Example

This is a modification of one of our JDBC examples (JDBCGUI.java) from Chapter
7. It is advisable to specify an error page, of course, since several things can go
wrong when accessing a database that could be remote.

There are several changes that need to be made to the original program, as listed
below.

• Specify that the class implements Serializable.
• Remove all references to GUI elements (substantially reducing the

code in so doing).
• Remove all exception-handling code (since we shall be using a

JSP error page).
• Since class ResultSet has no constructor and does not implement

Serializable, introduce a Vector for transferring query results.
• Introduce a ‘get’ method for retrieving the contents of the Vector

object.

Unfortunately Java's auto-unboxing doesn't work with JSPs, so the numeric values
retrieved from the database and stored in a Vector will need to be assigned to objects
of the type ‘wrapper’ classes (Integer and Float) when the Vector is received by the
JSP. Outputting the values directly is no problem, though, since the toString method
of each wrapper class object will automatically be invoked when we do so.

Here is the code for the bean...

package jdbc;

import java.sql.*;
import java.util.Vector;

public class JDBCBean implements java.io.Serializable
{
 private Vector<Object> acctDetails;

 public JDBCBean() throws SQLException,
 ClassNotFoundException

JavaBeans 327

 {
 Connection link = null;
 Statement statement = null;
 ResultSet results = null;

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 link = DriverManager.getConnection(
 "jdbc:odbc:Finances","","");
 statement = link.createStatement();
 results = statement.executeQuery(
 "SELECT * FROM Accounts");

 acctDetails = new Vector<Object>();

 while (results.next())
 {
 acctDetails.add(results.getInt(1));
 acctDetails.add(results.getString(3)
 + " " + results.getString(2));
 acctDetails.add(results.getFloat(4));
 }

 link.close();
 }

 public Vector<Object> getAcctDetails()
 {
 return acctDetails;
 }

}

 The code for the error page will be placed in file JDBCError.jsp. The code for the
main JSP creates a local Vector that stores the query results returned by the
appropriate ‘get’ method in the bean. The results are then displayed in a table. The
code for the main JSP is shown below. Note that the bean to be used must be
identified in the useBean tag by a concatenation of its package name and bean
name (jdbc.JDBCBean).

<HTML>
 <%@ page language="java" contentType="text/html"
 import="java.util.*" errorPage="JDBCError.jsp" %>
 <jsp:useBean id="data" class="jdbc.JDBCBean" />

 <HEAD>
 <TITLE>JDBC Bean Test</TITLE>
 </HEAD>

328 An Introduction to Network Programming with Java

 <BODY>
 <CENTER>

 <H1>Results</H1>

 <TABLE BGCOLOR="aqua" BORDER=1>
 <TR>
 <TH BGCOLOR="orange">Acct.No.</TH>
 <TH BGCOLOR="orange">Acct.Name</TH>
 <TH BGCOLOR="orange">Balance</TH>
 </TR>

 <%
 Vector<Object> nums=data.getAcctDetails();
 Integer acctNum;
 String acctName;
 Float balance;
 final int NUM_FIELDS = 3;

 for (int i=0;i<nums.size()/NUM_FIELDS;i++)
 {
 //Auto-unboxing doesn't work here!
 acctNum = (Integer)nums.elementAt(
 i*NUM_FIELDS);
 acctName = (String)nums.elementAt(
 i*NUM_FIELDS + 1);
 balance = (Float)nums.elementAt(
 i*NUM_FIELDS + 2);

 %>
 <TR>

 <TD><%= acctNum %></TD>
 <TD><%= acctName %></TD>
 <TD><%= balance %></TD>
 </TR>

 <%
 }
 %>

 </TABLE>

 </CENTER>
 </BODY>

JavaBeans 329

</HTML>

The output from this JSP is shown in Figure 10.11.

Figure 10.11 Normal output from JDBC.jsp.

 As in an earlier example from the previous chapter, our error page will simply
make use of the exception object’s toString method to display the associated error
message and then allow a fresh attempt at data retrieval. The code for the error page
is shown below.

<!-- JDBCError.jsp -->

<%@ page isErrorPage="true" %>

<HTML>

 <HEAD>
 <TITLE>Error Page</TITLE>
 </HEAD>

 <BODY>

 <CENTER><H3>Data Retrieval Error

330 An Introduction to Network Programming with Java

 <%= exception.toString() %></H3>

 <FORM METHOD=GET ACTION="JDBC.jsp">
 <INPUT TYPE="Submit" VALUE="Try again">
 </FORM>
 </CENTER>

 </BODY>

</HTML>

Figure 10.12 shows an example of the output from this JSP. (The specific error
message shown here resulted from removing the data source.)

 Fig. 10.12 Error output from JDBC.jsp (via JDBCError.jsp).

10.7.3 Using HTML Tags to Manipulate a Bean's Properties

In addition to using JSPs for reading and displaying data via JavaBeans, it is also
possible to use them for manipulating bean properties directly (both reading and
writing). This is achieved by using action tags <jsp:getProperty> and
<jsp:setProperty>, which are used to ‘get’ and ‘set’ exposed bean
properties respectively. This is particularly useful for non-programmers. For the
<jsp:getProperty> tag, two attributes are required:

JavaBeans 331

• name (specifying name of required bean);
• property (specifying name of property).

The value of the specified property will be displayed at the position in the Web page
where this tag occurs. Note that a named property X does not actually have to exist
as an attribute of the bean, but method getX must. This can be very useful for
returning a calculated value, as the example below illustrates.

Example

This example simply extends JDBCBean.java by providing method
getNumAccounts, which returns the number of account holders in table Accounts of
our Finances database. The new version of the bean is called JDBCBeanX.java. For
ease of comparison with the original bean, the code changes are shown in bold.

package jdbc;

import java.sql.*;
import java.util.*;

public class JDBCBeanX implements java.io.Serializable
{
 private static Connection link;
 private static Statement statement;
 private static ResultSet results;
 private static Vector<Object> acctDetails;
 private final int NUM_FIELDS = 3;

 public JDBCBeanX() throws SQLException,

 ClassNotFoundException
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 link = DriverManager.getConnection(
 "jdbc:odbc:Finances","","");
 statement = link.createStatement();
 results = statement.executeQuery(
 "SELECT * FROM Accounts");

 acctDetails = new Vector<Object>();

 while (results.next())
 {
 acctDetails.add(results.getInt(1));
 acctDetails.add(results.getString(3) + " "
 + results.getString(2));

332 An Introduction to Network Programming with Java

 acctDetails.add(results.getFloat(4));
 }

 link.close();
 }

 public Vector<Object> getAcctDetails()
 {
 return acctDetails;
 }

 public int getNumAccounts()
 {
 /*
 Dividing the number of objects in the Vector
 holding the data by the number of table fields
 will produce the number of rows (and so the
 number of accounts) in the database table...
 */

 return acctDetails.size()/NUM_FIELDS;
 }
}

For consistency (and to save an unnecessary effort of imagination!), the
corresponding JSP will be named JDBCX.jsp. The name of the error page will be
changed in a similar fashion (with appropriate creation of this new, but identically-
coded, error page) and the name of the bean will also be changed in the
<jsp:useBean> tag. The lines containing these minor changes are shown below
(with the changes marked in bold).

<%@ page language="java" contentType="text/html"
errorPage="JDBCXError.jsp" %>
<jsp:useBean id="data" class="jdbc.JDBCBeanX" />

In order to use the JSP to access the numAccounts property and display the result it
returns, the following lines must be placed after the </TABLE> tag in the original
JSP:

Number of accounts held:

<jsp:getProperty name="data" property="numAccounts"
/>

The resultant output is shown in Figure 10.13.

For the <jsp:setProperty> tag, three attributes are commonly required:

JavaBeans 333

• name (of bean, as before);
• property (as before);
• value (to be assigned to the property).

The example below sets the balance property of a bean called account to 0.

<jsp:setProperty name="account" property="balance"
value="0" />

Figure 10.13 Output from JDBCX.jsp.

Instead of setting the property to a literal value, though, we often need to set it to a
parameter value passed to the JSP (possibly via a form), provided that the parameter
has the same type as the property (or can be converted into that type). There are
three ways of doing this...

1. If the parameter has the same name as the property, simply omit the value
attribute of that property. For example:

<jsp:setProperty name="account" property="balance" />
(Note that there is no need to call getParameter to retrieve the value of the
parameter.)

2. Use a parameter with a different name, replacing the value attribute with a
param attribute. For example:

334 An Introduction to Network Programming with Java

<jsp:setProperty name="account" property="balance"
 param="userEntry" />

3. Set all bean properties that have names matching those of parameters sent to the
page (at the same time). In this variation, only attributes name and property can
be used, with the latter being set to "*". For example:

<jsp:setProperty name="account" property="*" />
(Parameters having names matching attributes of account are used to set values of
those attributes.)

 Now let's take a look at a complete JSP that makes use of a
<jsp:setProperty> tag...

Example

This example involves a simplified electronic ordering system in which the user's
order details are accepted via a form and then displayed back to him/her on a
separate Web page, with the user being prompted to confirm those values. (In this
artificial example, the user would need to use the browser's 'back' button to change
any entries.)

Here's the code for the initial Web page (Order.html) that passes form input to our
JSP (Order.jsp):

<HTML>

 <HEAD>
 <TITLE>Shopping Order</TITLE>
 </HEAD>

 <BODY>

 <CENTER>
 <H1>Order Details
 </H1>

 <!-- Pass all form entries to Order.jsp... -->
 <FORM METHOD=POST ACTION="Order.jsp">

 <TABLE>
 <TR>
 <TD>Name:</TD>
 <TD><INPUT TYPE="text" NAME= "name"></TD>
 </TR>

JavaBeans 335

 <TR>
 <TD>Address line1:</TD>
 <TD><INPUT TYPE="text"
 NAME= "addressLine1"></TD>
 </TR>
 <TR>
 <TD>Address line2:</TD>
 <TD><INPUT TYPE="text"
 NAME= "addressLine2"></TD>
 </TR>
 <TR>
 <TD>Address line3:</TD>
 <TD><INPUT TYPE="text"
 NAME= "addressLine3"></TD>
 </TR>
 <TR>
 <TD>Post code:</TD>
 <TD><INPUT TYPE="text"
 NAME= "postCode"></TD>
 </TR>
 <TR>
 <TD>Order item:</TD>
 <TD><INPUT TYPE="text"
 NAME= "orderItem"></TD>
 </TR>
 <TR>
 <TD>Quantity:</TD>
 <TD><INPUT TYPE="text"
 NAME= "quantity"></TD>
 </TR>
 </TABLE>

 <INPUT TYPE="submit" VALUE= "Send order">

 </FORM>

 </BODY>

</HTML>

An example featuring user input when the above page is displayed is shown in
Figure 10.14.
 The bean to be used will simply hold instance variables corresponding to all form
values shown on the above page (with identical names) and their corresponding
accessor and mutator ('get' and 'set') methods.

We'll call our bean OrderBean and place it into package shopping...

336 An Introduction to Network Programming with Java

Figure 10.14 Example I/O for Order.html.

package shopping;

import java.util.*;

public class OrderBean implements java.io.Serializable
{
 private String name;
 private String addressLine1, addressLine2,
 addressLine3;
 private String postCode;
 private String orderItem;
 private int quantity;
 private Date orderDate;

 public String getName()
 {
 return name;
 }

 public void setName(String nameIn)
 {
 name = nameIn;
 }

 public String getAddress()

JavaBeans 337

 {
 return (addressLine1 + "\n"
 + addressLine2 + "\n"
 + addressLine3 + "\n"
 + postCode);
 }

 public String getAddressLine1()
 {
 return addressLine1;
 }

 public void setAddressLine1(String add1)
 {
 addressLine1 = add1;
 }

 public String getAddressLine2()
 {
 return addressLine2;
 }

 public void setAddressLine2(String add2)
 {
 addressLine2 = add2;
 }

 public String getAddressLine3()
 {
 return addressLine3;
 }

 public void setAddressLine3(String add3)
 {
 addressLine3 = add3;
 }

 public String getPostCode()
 {
 return postCode;
 }

 public void setPostCode(String code)
 {
 postCode = code;
 }

 public String getOrderItem()

338 An Introduction to Network Programming with Java

 {
 return orderItem;
 }

 public void setOrderItem(String item)
 {
 orderItem = item;
 }

 public int getQuantity()
 {
 return quantity;
 }

 public void setQuantity(int qty)
 {
 quantity = qty;
 }
}

The required JSP will allow us to make use of a 'body' within the
<jsp:useBean> tag for holding the <jsp:setProperty> tag and setting the
bean properties to the form values. When a body is used, an explicit
</jsp:useBean> closing tag is required. Assuming that our bean instance is to
be called purchase, the opening lines of our JSP will be as follows:

<jsp:useBean id="purchase" class="shopping.OrderBean">
 <jsp:setProperty name="purchase" property="*" />
</jsp:useBean>

For retrieving and displaying properties, we can again make use of
<jsp:getProperty> tags. To emphasise the setting of property values that has
occurred, the names of bean properties will be displayed in the table output. Here's
the code for the JSP...

<HTML>
<%@ page language="java" contentType="text/html" %>
<jsp:useBean id="purchase" class="shopping.OrderBean">
 <jsp:setProperty name="purchase" property="*" />
</jsp:useBean>

 <HEAD>
 <TITLE>Order Bean Test</TITLE>
 </HEAD>

 <BODY>
 <CENTER>
 <H1>Results</H1>

JavaBeans 339

 <TABLE BGCOLOR="aqua">
 <TR>
 <TH BGCOLOR="orange">Field Name</TH>
 <TH BGCOLOR="orange">Value</TH>
 </TR>
 <TR>
 <TD>name</TD>
 <TD><jsp:getProperty name="purchase"
 property="name" /></TD>
 </TR>
 <TR>
 <TD>addressLine1</TD>
 <TD><jsp:getProperty name="purchase"
 property="addressLine1" /></TD>
 </TR>
 <TR>
 <TD>addressLine2</TD>
 <TD><jsp:getProperty name="purchase"
 property="addressLine2" /></TD>
 </TR>
 <TR>
 <TD>addressLine3</TD>
 <TD><jsp:getProperty name="purchase"
 property="addressLine3" /></TD>
 </TR>
 <TR>
 <TD>postCode</TD>
 <TD><jsp:getProperty name="purchase"
 property="postCode" /></TD>
 </TR>

 <TR>
 <TD>orderItem</TD>
 <TD><jsp:getProperty name="purchase"
 property="orderItem" /></TD>
 </TR>
 <TR>
 <TD>quantity</TD>
 <TD><jsp:getProperty name="purchase"
 property="quantity" /></TD>
 </TR>
 </TABLE>

 <FORM METHOD=GET ACTION="Acceptance.html">

340 An Introduction to Network Programming with Java

 <!--
 When confirm button pressed,
 display Acceptance.html.
 -->
 <INPUT TYPE="submit" VALUE="Confirm">
 </FORM>

 </CENTER>
 </BODY>

</HTML>

Output is shown in Figure 10.15. (As noted earlier, the user in this simple example
can change the order only by using the browser's 'back' button!)

Figure 10.15 Output from Order.jsp.

All that remains now is to show the code for a simple acceptance Web page (which
really is minimalistic):

<HTML>

 <HEAD>
 <TITLE>Order Acceptance</TITLE>
 </HEAD>

JavaBeans 341

 <BODY TEXT="red">

 <CENTER>
 <H1>Order Accepted!</H1>
 </CENTER>

 </BODY>

</HTML>

Output from this final page is shown in Figure 10.16.

Figure 10.16 Output from Acceptance.html.

Finally, listed below are some advanced aspects of JavaBeans not covered in this
chapter.

• Custom event types.
• BeanInfo classes, used to provide builder tools with more

information about the characteristics of beans.
• Custom property editors (to provide greater sophistication than the

default editors).

342 An Introduction to Network Programming with Java

Exercises

Before you start the exercises below, make sure that you to have either the Finances
database or the Sales database (both from Chapter 7) set up as an ODBC data
source.

10.1 (i) If you are using the Finances database, then you need take no action here.
If you are using the Sales database, however, you will need to re-code (and
re-compile) JDBCBean.java so that the bean is accessing the Stock table from
the Sales database.

 (ii) Create a simple (non-GUI) application that makes use of JDBCBean.
Your program should simply display the query results retrieved by the bean.

 Note that, since the bean 'throws' ClassNotFoundException and
SQLException, your code will have to catch (or throw) these exceptions.

10.2 Modify the code for JDBCGUI.java from section 7.8 to produce a GUI-
driven application that makes use of JDBCBean and a JTable to display the
query results. In so doing, remember (if you are using the Finances database)
that the bean concatenates surname and first names, effectively reducing the
number of display fields from four to three. In addition to the table of results,
the application should provide just a simple 'Quit' button. (Once again, you
will have to cater for the ClassNotFoundException and SQLException not
handled by the bean.)

10.3 (i) Create a JavaBean that encapsulates a very simple calculator that will
allow the user to enter an arithmetic expression involving two operands. The
user should be able to carry out the four basic arithmetic operations (using
operators '+', '-', 'x' and '/'). Two buttons should be provided, the first of these
to calculate and display the result of the current calculation and the second to
move the result into the field for the first operand (with subsequent fields
being cleared), so that the user can carry out further operations on this result.
The layout should look something like that shown below.

 Note that no main method is required (and so there will be no reference to
Main-Class in the subsequent manifest file referred to in the next part of this
exercise).

 (ii) Create a manifest file for the above bean and then package the bean and
its manifest within a JAR file. Use the Bean Builder to load this JAR file and
test the working of the bean.

JavaBeans 343

10.4 Create a simple GUI-driven application that makes use of the above bean to
provide the user with a simple calculator. In addition to the bean itself, you
need supply only a 'Quit' button.

10.5 Modify the calculator bean so that the user can set the background colour of
the result box to red, green or blue, via method setResultBground. Then
modify the code for the previous exercise by adding a button that allows the
user to make use of method setResultBground (probably via method
JOptionPane.showInputDialog).

10.6 (i) Create a bean called JDBCQueryBean that is a modification of
JDBCBean. Instead of dealing only with a fixed query 'SELECT * FROM
Accounts', this bean should be capable of processing any query directed at the
Accounts/Stock table (depending upon which database you are using). The
code for the major method getQueryResults is supplied overleaf. In addition
to this method, the bean should provide read/write access to a property called
query that holds the current query (and has a default value of 'SELECT *
FROM Accounts'). Read access should also be provided to properties
numFields (holding the number of fields in the query) and numRows (the
number of rows in the query results).

 (ii) Create a simple HTML page that uses a text field in a form to accept the
user's query and pass it on to a JSP called JDBCQuery.jsp.

 (iii) Possibly using JDBC.jsp as a starting point, produce a JSP that accepts
the query from the above HTML page and then uses the bean to display the
results of the query in a table.

public static Vector<Object> getQueryResults()
 throws SQLException
{
 results = statement.executeQuery(getQuery());
 metaData = results.getMetaData();
 numFields = metaData.getColumnCount();

 queryResults = new Vector<Object>();
 fieldNames = new Vector<String>();
 dataTypes = new Vector<String>();

 for (int i=1; i<=numFields; i++)
 fieldNames.add(metaData.getColumnName(i));

 while (results.next())
 {
 for (int i=1; i<=numFields; i++)
 {
 int colType = metaData.getColumnType(i);

344 An Introduction to Network Programming with Java

 switch (colType)
 {
 case Types.INTEGER:
 queryResults.add(results.getInt(i));
 dataTypes.add("integer");
 break;
 case Types.VARCHAR:
 queryResults.add(
 results.getString(i));
 dataTypes.add("string");
 break;
 case Types.NUMERIC:
 queryResults.add(
 results.getFloat(i));
 dataTypes.add("float");
 break;
 default: //Hopefully, will never happen!
 queryResults.add(
 results.getString(i));
 dataTypes.add("string");
 }
 }
 }
 return queryResults;
}

11 Introduction to Enterprise JavaBeans

Learning Objectives
After reading this chapter, you should:

• know what Enterprise JavaBeans (EJBs) are and why they are
considered important;

• know what the different categories of EJB are and what purposes
these different categories serve;

• be aware of the software requirements for the creation and running
of EJBs;

• be capable of creating stateless session beans with container-
managed persistence;

• know the basic steps required to create other types of session and
entity beans;

• be capable of implementing a client program to make use of an
EJB.

Apart from a similarity in names and the fact that they are both component models,
JavaBeans and Enterprise JavaBeans (EJBs) have little in common. Firstly, EJBs run
inside EJB containers, housed within Component Transaction Monitors (CTMs),
which are part of advanced business application servers. EJBs contain the logic
required to run specific business processes and are intended for use in the multi-tier
networks of large organisations, accessible by client programs across the various
systems of such organisations. A Java program running only on a single workstation
or using only a simple client-server model has no need for EJBs. The EJB model
provides a very flexible means of creating distributed business objects and greatly
simplifies the process of developing such business objects by handling issues such
as object persistence, security, concurrency and transaction management. In
addition, EJBs can run without modification on any operating system. Because of
the relative complexity of the subject, what follows can offer only an introduction to
EJBs. However, it will provide the reader with a sound understanding of the basic
structure of Enterprise JavaBeans and the knowledge required to create such beans.
The reader who requires a deeper understanding of the subject is referred to
Enterprise JavaBeans (4th Ed.) by R. Monson-Haefel (O'Reilly, 2004).

11.1 Categories of EJB

EJBs cannot be used with Java 2 Standard Edition. The Java classes and interfaces
required for Enterprise JavaBeans are contained within package javax.ejb, which is
part of the Java 2 Enterprise Edition (J2EE). Prior to EJB 2.0, there were just two
types of EJB: entity beans and session beans. EJB 2.0 (released in 2001) introduced
a third category: message-driven beans. However, message-driven beans require the

346 An Introduction to Network Programming with Java

use of JMS (Java Message Service), not covered in this text, and no further mention
will be made of this third category.
 Entity beans model real-world objects (products, customers, etc.), while session
beans model processes. Session beans often coordinate the activities of several types
of entity bean. For example, a Purchase session bean might make use of Customer,
Product and Order entity beans. Whereas entity beans model things that have a
representation in a database, session beans do not (though they will usually access,
and possibly modify, the database representations of entity beans). To put this
another way, entity beans have a persistent state, while session beans do not.
 Entity beans themselves may be divided into two categories: those that implement
container-managed persistence and those that implement bean-managed
persistence. With the former, the EJB container handles all direct manipulation of
the database automatically, according to how the bean's persistent data fields have
been mapped to the database [See Deployment later]; with the latter, the bean
manipulates the database directly, using explicit SQL statements. The advantage of
container-managed persistence is that beans may be defined independently of the
type of database to be used. The disadvantage, however, is that such persistence
management requires the use of sophisticated tools for mapping the bean's fields to
the database. In this introduction to EJBs, we shall restrict our attention to entity
beans with container-managed persistence.
 Session beans may also be divided into two categories: stateless session beans
and stateful session beans. The former are general-purpose beans that may be of
use to a number of different client applications, while the latter are client-specific. A
stateful session bean is an extension of the client application and maintains data
relating to the client application (until the client is terminated or a present timeout
period has elapsed). Here, we shall consider only stateless session beans.

11.2 Basic Structure of an EJB

For illustration purposes in what follows, we shall construct a very simple stateless
session bean that involves no database access (somewhat unrealistically), but simply
allows client programs to display a greeting by calling the appropriate method of the
bean. The EJB code will be held in package ejbs.hello (and so the files must be
saved in a directory whose path ends in ejbs\hello).

Whether implementing an entity bean or a session bean, we must define the
following two interfaces:

• the remote interface;
• the home interface.

The remote interface is the client's view of the EJB. It declares the business methods
that the EJB will make available to clients, but leaves the implementation of those
methods to be generated automatically via the tools of the EJB container. It extends
interface javax.ejb.EJBObject (which, in turn, extends java.rmi.Remote). All method
signatures must specify throws java.rmi.RemoteException. Here's the code for our
'Hello' bean's remote interface:

Introduction to Enterprise JavaBeans 347

package ejbs.hello;

import java.rmi.*;
import javax.ejb.*;

public interface Hello extends EJBObject
{
 public String greet() throws RemoteException;
}

 The home interface extends interface javax.ejb.EJBObject and provides methods
for creating new beans, removing beans (not mandatory) and, if they are entity
beans, locating them (or, more precisely, locating their database representations). As
in the remote interface, all method signatures must specify throws
java.rmi.RemoteException. In addition, each individual method signature will throw
an exception associated with the particular type of method involved. Once again, it
is the responsibility of the EJB container to generate the definitions for the methods
declared in the interface. The code for our example bean's home interface is shown
below and simply provides the signature for a method that will be called to create an
instance of the bean. The particular exception type associated with such 'create'
methods is CreateException.

package ejbs.hello;

import java.rmi.*;
import javax.ejb.*;

public interface HelloHome extends EJBHome
{
 public Hello create()

throws CreateException, RemoteException;
}

Having declared both of the above interfaces, the bean developer needs to provide
the definition for the bean class itself. An entity bean must implement interface
javax.ejb.EntityBean, while a session bean must implement javax.ejb.SessionBean.
The bean class doesn't implement either the remote interface or the home interface,
but must provide method definitions matching all the methods declared in the
remote interface and must also define methods corresponding to some of those
declared in the home interface. This is due to the fact that a client never interacts
directly with a bean class, but uses the methods of the EJB's home and remote
interfaces, interacting with blocks of code called stubs that are generated
automatically by the EJB container.
 Some of the coding in the bean implementation simply involves implementing
standard methods required by the EJB specification and it is often the case that
several of these methods may simply be given empty bodies. These methods are
visible only to the bean container. Only the business methods (those methods

348 An Introduction to Network Programming with Java

matching ones in the remote interface) are visible to client applications. Here is the
code for our example bean class:

package ejbs.hello;

import java.rmi.*;
import javax.ejb.*;
import javax.naming.*;

public class HelloBean implements SessionBean
{
 private SessionContext context;

 public void setSessionContext(SessionContext context)
 {
 this.context = context;
 }

 /*
 The next method corresponds to the create method
 in the home interface HelloHome.java.
 When the client calls HelloHome.create(), the
 container allocates an instance of the EJBean and
 calls ejbCreate().
 */
 public void ejbCreate ()
 {
 //Left empty.
 }

 public void ejbActivate()
 {
 //Left empty.
 }

 public void ejbPassivate()
 {
 //Left empty.
 }

 public void ejbRemove()
 {
 //Left empty.
 }

 /*
 Now for the business logic.
 Only one simple method in this example...

Introduction to Enterprise JavaBeans 349

 */
 public String greet() throws RemoteException
 {
 return("Hello there!");
 }
}

 If the bean were an entity bean, it would normally also require a class that
identifies the primary key for the associated database table, but we have no need for
such a class for a session bean, since it holds no persistent data.

11.3 Packaging and Deployment

Having created and compiled the above files, we need to create a deployment
descriptor file. The role of the deployment descriptor is to customise runtime
properties of the bean (e.g., security) for a particular application/environment. In
EJB 1.0, the deployment descriptor was an instance of either
javax.ejb.deployment.EntityDescriptor or javax.ejb.deployment.SessionDescriptor,
both of which implement java.io.Serializable. From EJB 1.1 onwards, however, the
file format for a deployment descriptor has been based upon XML (Extensible
Markup Language) and this is the format that will be used here. The full
specification of the file is somewhat overwhelming and is shown in Appendix B.
However, (a) it will rarely be necessary to specify all of the possible elements/tags
and (b) it will usually be the case that a skeleton deployment descriptor can be
generated via one of the EJB container's tools and the missing details filled in by the
developer. Here is the deployment descriptor for our simple example:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>HelloBean</ejb-name>
 <home>ejbs.hello.HelloHome</home>
 <remote>ejbs.hello.Hello</remote>
 <ejb-class>ejbs.hello.HelloBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <security-role>

350 An Introduction to Network Programming with Java

 <role-name>everyone</role-name>
 </security-role>
 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>HelloBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>
 <ejb-name>HelloBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

 The reader should refer to Appendix B for an explanation of each of the elements
in the above file. If the EJB container does not have a tool to generate a skeleton for
this file automatically (which is unlikely), then it will be a great time-saver to create
a skeleton yourself for future re-use or to take a copy of an existing deployment
descriptor and make the necessary modifications to it. Since the way in which
deployment descriptors are created is not mandated in the EJB specification, EJB
container vendors are free to generate these files in whatever ways they choose. This
means that the interface provided for their creation may vary considerably between
vendors.
 However it is created, the deployment descriptor needs to be saved with the name
ejb-jar.xml into folder META-INF, which needs to be created (if not automatically
created by the container tool) as an immediate sub- folder of the root folder for the
bean. For our example bean, this will mean as an immediate sub- folder of the folder
containing ejbs (i.e., as a 'sibling ' folder of ejbs).

We are now almost ready to deploy our bean ⎯ i.e., to install it into a suitable
container, where it will be accessible by client programs. Before we can do that,
however, we must gather together all the files we have created and package them
within a JAR file (as described in section 10.2). The jar utility will automatically
generate a manifest file that acts as a table of contents and allows the user to view
the contents of the file. In EJB 1.0, it was necessary to create a manifest file
explicitly before creating the JAR file and insert lines to identify the deployment
descriptor and to establish the fact that the file referred to one or more EJBs.
However, this is not necessary in EJB1.1 onwards. Assuming that all the bean
source files are in a folder with a path ending in ejbs\hello (as they should be, to be
consistent with our package naming) and the deployment descriptor is in directory
META-INF (alongside folder ejbs), we would move to the folder immediately above
ejbs and then create our JAR file with the name hello.jar via the following
command:

Introduction to Enterprise JavaBeans 351

jar cvf hello.jar ejbs\hello*.class META-INF\ejb-jar.xml

 The precise procedure for deploying the EJB will vary according to the particular
EJB container used [See Section 11.5 for a particular example container], but the
deployment tool will read the JAR file and locate the deployment descriptor. The
interface provided will normally allow the user to change deployment information at
this stage, but it is likely that all the user needs to do is map the persistent fields (for
an entity bean) to the corresponding database fields.

11.4 Client Programs

Our EJB is now deployed and ready to accept client calls to any of the methods
specified in the bean's remote interface (the one and only method in our example!).
Clients will make use of the JNDI (Java Naming and Directory Interface), which is
an implementation-independent API that will allow clients to access beans
regardless of their location on the network. A client program will contain the five
basic steps shown below.

1. Establish the JNDI context, obtaining a network connection to the
EJB server.

2. Use the context object created above to return an Object reference to
the home interface of the bean.

3. Use method narrow of class PortableRemoteObject to 'narrow' the
Object reference above into a Remote reference and then typecast
this reference into the appropriate home interface type (HelloHome,
in our example).

4. Use the home interface (via the above reference) to instruct the EJB
container to create an instance of the bean, returning a reference to
the bean's remote interface.

5. Use the remote interface to execute the methods of the bean.

 The first step involves a call to method getInitialContext, a definition for which
must be supplied by the client program. Note that this will require some vendor-
specific code to establish the initial connection (analogous to JDBC's requirement
for the name of the appropriate database driver). The required code looks a little
unusual, but is very small in volume. Essentially, a Properties object (from package
java.util) is created and then filled with values that will establish the initial context
for the connection to be made. The comments included with the client program
below (which accesses our example bean, of course) should make the code readily
understandable.

package ejbs.hello;

import javax.naming.*;
import javax.rmi.*;

352 An Introduction to Network Programming with Java

import java.util.Properties;

public class HelloClient
{
 public static void main(String[] args)
 {
 try
 {
 //Step 1:
 Context context = getInitialContext();
 /*
 Above method needs to be defined for a
 specific container, and so contains some
 vendor-specific code.
 */

 //Step 2:
 Object homeRef = context.lookup("HelloHome");

 //Step 3:
 HelloHome home =
 (HelloHome)PortableRemoteObject.narrow(
 homeRef,HelloHome.class);
 /*
 EJB 1.0 simply used a cast, instead of the
 above.
 The use of PortableRemoteObject.narrow() is
 required to support RMI over IIOP.
 */

 //Step 4:
 Hello hello = home.create();

 //Step 5 (call to method greet):
 System.out.println("Output from bean: "
 + hello.greet());
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public static Context getInitialContext()
 throws NamingException
 {
 Properties props = new Properties();

Introduction to Enterprise JavaBeans 353

 /*
 Second argument below holds vendor-specific
 string.
 Here, the string refers to WebLogic's EJB
 container.
 */
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

 /*
 Again, the second argument below is a vendor-
 specific string indicating the WebLogic protocol
 't3' and WebLogic's default server port of 7001.
 */
 props.put(
 Context.PROVIDER_URL,"t3://localhost:7001");
 return new InitialContext(props);
 }
}

Once compiled, the above client can be executed by entering the following
command:

java ejbs.hello.HelloClient

This should produce the output shown below.

Output from bean: Hello there!

11.5 Entity EJBs

As stated at the outset, this chapter is intended to provide no more than a sound
introduction to the structure of Enterprise JavaBeans and the knowledge required to
create such beans. In order to avoid complexity, coverage has been restricted to a
very simple example that involved only a session EJB. However, since EJBs almost
invariably involve database access of some kind (and this is only directly possible
with entity EJBs, of course), it would be unrealistic not to give some indication of
how an entity EJB would be created. As stated at the end of 11.2, an entity EJB
requires an extra class that will identify the primary key for the associated database
table.
 As a simple example, let's take a database table called Product that holds just two
fields: Code (a string, identifying a product's stock code) and Level (an integer,
showing the item's current stock level). Let's suppose that our EJB is going to be
called StockBean and that the files for this EJB are going to be held in package
ejbs.sales. Like session beans, our entity bean will require a remote interface, a

354 An Introduction to Network Programming with Java

home interface and a bean class. Typical contents of these for the current example
are shown in what follows.

Remote interface (containing signatures for typical 'get' and 'set' methods):

package ejbs.sales;

import java.rmi.*;
import javax.ejb.*;

public interface Stock extends EJBObject
{
 public String getCode() throws RemoteException;
 public void setCode(String code)
 throws RemoteException;
 public int getLevel() throws RemoteException;
 public void setLevel(int level)
 throws RemoteException;
}

 In order for database elements to be accessed, the home interface will need to
provide some means of locating particular database records. This, of course, will
commonly mean making use of the database table's primary key and is achieved via
method findByPrimaryKey, which can generate a FinderException (in addition to a
RemoteException). This method returns a reference to the corresponding bean (of
type Stock, here) and takes a single argument of type X, where 'X' identifies the type
of the primary key and must implement the java.io.Serializable interface. For single-
field primary keys, this type will normally be String or one of the numeric wrapper
classes (Integer, etc.), all of which implement java.io.Serializable, of course. For
compound keys, the type will be the name of the primary key class (still to be
defined, but given the name StockPK for our example), which must then implement
interface java.io.Serializable.
 Since our example has a single-field primary key, however, we can simply specify
an argument of type String, as shown in our bean's home interface below. Also
featured below is abstract method remove, which takes a single argument of type
Object that identifies the primary key for a particular bean. This method removes the
corresponding database record and invalidates the bean's remote reference. As for
other home interface methods, it can generate an exception specific to itself (namely,
RemoveException), as well as the more general RemoteException.

package ejbs.sales;

import javax.ejb.*;
import java.rmi.*;

public interface StockHome extends EJBHome
{
 public Stock create(String code)

Introduction to Enterprise JavaBeans 355

throws CreateException, RemoteException;
 public Stock findByPrimaryKey(String key)

throws FinderException, RemoteException;
 //Can provide other 'findBy' methods, if we wish.
 public abstract void remove(Object key)

throws RemoveException, RemoteException;
}

Now it's time to consider the bean class itself. This must supply/identify several
things:

• the persistent data fields (corresponding to the database fields);
• a reference (of type EntityContext) to the bean instance's interface

to its container;
• definitions for methods ejbCreate and ejbPostCreate;
• definitions for the bean's business methods, as identified in the

remote interface;
• definitions for seven other methods (as identified in 11.2), two of

which are responsible for setting/unsetting the entity context
identified above.

Here's the code for our example bean:

package ejbs.sales;

import javax.ejb.*;

public class StockBean implements EntityBean
{
 public String code; //Persistent
 public int level; //data.

 public EntityContext context;

 public StockPK ejbCreate(String code, int level)
 {//(In EJB1.0, the return type was void.)
 this.code = code;
 this.level = level;
 return null;
 }

 public void ejbPostCreate(String code, int level)
 {
 StockPK key = (StockPK)context.getprimaryKey();
 //Could now carry out initialisation of
 //persistent data, via primary key.
 }

356 An Introduction to Network Programming with Java

 //The next four methods match the business methods
 //defined in the bean's remote interface...

 public String getCode()
 {
 return code;
 }

 public void setCode(String code)
 {
 this.code = code;
 }

 public int getLevel()
 {
 return level;
 }

 public void setLevel(int level)
 {
 this.level = level;
 }

 public void setEntityContext(EntityContext context)
 {
 this.context = context;
 }

 public void unsetEntityContext()
 {
 context = null;
 }

 public void ejbActivate()
 {
 /*
 When EJB server is started, bean instances are
 created and placed in a 'pool'.
 When a bean instance is about to be allocated to
 a client request (thereby becoming 'active'),
 this method is called.
 Method left empty here.
 */
 }

 public void ejbPassivate()
 {
 //Bean is about to be deactivated.

Introduction to Enterprise JavaBeans 357

 //Method left empty here.
 }

 public void ejbLoad()
 {
 /*
 Bean's persistent data is about to be read from
 the database.
 Method left empty here.
 */
 }

 public void ejbStore()
 {
 /*
 Bean's persistent data is about to be written
 to the database.
 Method left empty here.
 /*
 }

 public void ejbRemove()
 {
 /*
 Bean is about to be dereferenced, prior to
 garbage collection.
 Method left empty here.
 /*
 }
}

 Finally, we come to the primary key class, to which we earlier allocated the name
StockPK. This class is a very simple one that must implement interface
java.io.Serializable and provide definitions for methods equals and hashCode (both
inherited from the ultimate superclass, Object). The hash code must be an integer
and should be designed to allow as few 'collisions' (database keys hashing to the
same value) as possible. For our simple example, however, we shall simply return
the record's code value (converted into an integer via the String class's hashCode
method. The primary key class should also define one or more constructors. Here's
the primary key class for our example:

package ejbs.sales;

public class StockPK implements java.io.Serializable
{
 public String code;

358 An Introduction to Network Programming with Java

 public StockPK()
 {
 //Default constructor.
 }

 public StockPK(String code)
 {
 this.code = code;
 }

 public boolean equals(Object obj)
 {
 //Check that reference exists and is of
 //correct type...
 if ((obj==null) || !(obj instanceof StockPK))
 return false;
 else if (((StockPK)obj).code == code)
 return true;
 else
 return false;
 }

 public int hashCode()
 {
 return code.hashCode();
 }
}

 One of the EJB container's tools will be responsible for setting up the mapping
between entity bean instances and database records, according to the primary key
specified in the above file. With some EJB containers, this tool may be a visual one
that allows the developer to link a bean's persistent data fields to their database
representations via graphical methods.

12 Multimedia

Learning Objectives
After reading this chapter, you should:

• know one multi-purpose method for transferring image, sound and
video files across a network;

• know a second method for transferring image files only across a
network;

• know two methods for displaying images in Java;
• know how to use Java for playing sound files;
• be aware of the API that needs to be downloaded for the playing

of video files;
• know how to use the Java Media Framework for playing audio

and video files.

In the early days of the Internet, the only type of information/data that could be
transferred was text. Gradually, file formats that allowed the transfer of data
associated with other media came onto the scene. Notable amongst these formats
was GIF (Graphics Interchange Format), the most enduring graphics file format,
which first appeared in 1987. However, it took the emergence of HTML and the
World Wide Web in 1991 to awaken users to the full potential of the Internet as a
vehicle for communication. As this potential dawned upon users, they began to crave
more flexible, more varied and more complete ways of conveying and accessing
information which meant the transfer of data in all its media (textual, graphical,
audio and video). The use of such multimedia data has since mushroomed, in spite
of the technical problems related to file size and speed of transfer. These problems
still exist, of course, but have been considerably alleviated by the greater bandwidth
provided by many of today's networks and will undoubtedly continue to diminish
over the coming years, as the technology advances.
 One very popular means of supplying multimedia information and entertainment
over the Internet is provided by Java applets (which will be covered in the next
chapter). Applets have been an integral part of Java since its earliest days and played
a great part in the initial popularising of the language. However, it is not necessary
to use applets for transferring multimedia files over the Internet. In fact, the
overhead of building up a Web page to do this and the security restrictions placed
upon applets can sometimes make the transfer of files via Java applications
preferable to the use of applets. In such applications, the use of interface Serializable
(described in section 4.6) is crucial.
 Java’s original support for audio was restricted to Sun Audio file format (.au
files). Nowadays, Windows Wave format (.wav files), Macintosh AIFF format (.aif
files) and the MIDI format (.mid or .rmf files) are all supported by the standard Java
libraries. For the transfer of image files, the original release of Java accepted only
GIF format (.gif files). Support for the JPEG format (.jpg and .jpeg files) was added

360 An Introduction to Network Programming with Java

in JDK1.1. In order to play video clips and most other file formats, however, it is
necessary to download the Java Media Framework. This API will be covered in a
later section of this chapter, but we shall restrict our attention to the standard J2SE
provision for the time being.

12.1 Transferring and Displaying Images Easily

In Java, classes Image (from package java.awt) and ImageIcon (package
javax.swing) are used for holding and manipulating images. Either may be used on
its own, but ImageIcon is particularly useful for loading an image from the current
directory into an application. For example:

 ImageIcon image = new ImageIcon("pic.gif");

ImageIcon is also useful for transferring the image across a network, since it
implements the Serializable interface. There are more ways than one of transferring
image files across a network via Java. However, since ImageIcon implements
Serializable, it is particularly convenient to use the method described below.

1. Create an ObjectOutputStream object from the relevant Socket object at the
sending end.

2. Transmit the ImageIcon object via method writeObject of ObjectOutputStream.
3. Create an ObjectInputStream object from the relevant Socket object at the

receiving end.
4. Receive the transmitted object via method readObject of ObjectInputStream.
5. Typecast the received object (from type Object) into ImageIcon.

As might be expected, there will often be a client-server relationship between the
two ends of such a communication (though it may be that the two ends are actually
peers and are using the client-server relationship merely as a convenience). The
basic code for the two ends of the communication will be very similar to that which
was featured in several of the examples in earlier chapters, of course. Because of
that, such lines will not be commented or explained (again) here. The lines of code
corresponding to steps 1-5 above, however, will be commented clearly in bold type.

Example

This example creates (a) a server process that transmits a fixed graphics file to any
client that makes contact and (b) a client process that makes contact with the server
and accepts the file that is transmitted.

Firstly, the server code...

import java.io.*;
import java.net.*;
import javax.swing.*;

Multimedia 361

public class ImageServer
{
 private static ServerSocket serverSocket;
 private static final int PORT = 1234;

 public static void main(String[] args)
 {
 System.out.println("Opening port...\n");
 try
 {
 serverSocket = new ServerSocket(PORT);
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to attach to port!");
 System.exit(1);
 }

 do
 {
 try
 {
 Socket link = serverSocket.accept();

 //Step 1...
 ObjectOutputStream outStream =
 new ObjectOutputStream(
 link.getOutputStream());

 //Step 2...
 outStream.writeObject(
 new ImageIcon("beesting.jpg"));

 //To play safe, flush the output buffer...
 outStream.flush();
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 }while (true);
 }
}

Before looking at the client code, it is appropriate to give consideration to how the
image might be displayed when it has been received. The simplest way of doing this

362 An Introduction to Network Programming with Java

is to create a GUI (using a class that extends JFrame) and define method paint to
specify the placement of the image upon the application. As was seen in the 'juggler'
animation bean in section 10.2 (though that application used a JPanel, rather than a
JFrame), this will entail calling the ImageIcon method paintIcon. The four
arguments required by this method were stated in section 10.2 and are repeated here:

• a reference to the component upon which the image will be
displayed (usually this, for the application container);

• a reference to the Graphics object used to render this image
(provided by the argument to paint);

• the x-coordinate of the upper-left corner of the image's display
position;

• the y-coordinate of the upper-left corner of the image's display
position.

Remember that we cannot call paint directly, so we must call repaint instead (and
allow this latter method to call paint automatically). This call will be made at the
end of the constructor for the client. Steps 3-5 from the original five steps are
commented in bold type in the client program.

Now for the code...

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ImageClient extends JFrame
{
 private InetAddress host;
 private final int PORT = 1234;
 private ImageIcon image;

 public static void main(String[] args)
 {
 ImageClient pictureFrame = new ImageClient();

 //Ideally, size of image should be
 //known in advance...
 pictureFrame.setSize(340,315);
 pictureFrame.setVisible(true);
 pictureFrame.setDefaultCloseOperation(
 EXIT_ON_CLOSE);
 }

 public ImageClient()
 {

Multimedia 363

 try
 {
 host = InetAddress.getLocalHost();
 }
 catch(UnknownHostException uhEx)
 {
 System.out.println("Host ID not found!");
 System.exit(1);
 }

 try
 {
 Socket link = new Socket(host,PORT);

 //Step 3...
 ObjectInputStream inStream =
 new ObjectInputStream(link.getInputStream());

 //Steps 4 and 5...
 image = (ImageIcon)inStream.readObject();

 //Remember to close the socket...
 link.close();
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 catch(ClassNotFoundException cnfEx)
 {
 cnfEx.printStackTrace();
 }

 //Now cause the paint method to be invoked...
 repaint();
 }

 public void paint(Graphics g)
 {
 //Define paint to display the image
 //upon the application frame...
 image.paintIcon(this,g,0,0);
 }
}
(Note that, though meaningful variable names are very much to be encouraged, the
use of variable name 'g' above (a) is very common practice and (b) cannot really be
misinterpreted, since it is glaringly obvious what it represents.)

364 An Introduction to Network Programming with Java

Example output from the client program after it has successfully received an image
from the server is shown in Figure 12.1.

Figure 12.1 Displaying a received image on a JFrame.

 An alternative to displaying the image directly onto the application frame is to
make use of an overloaded form of the JLabel constructor that takes an Icon 'object'
as its single argument. Icon is an interface that is implemented by class ImageIcon,
making an ImageIcon object also an Icon 'object'. Thus, the only changes that need
to be made to the client code above are as follows:

• declare the JLabel object;
• use new to create the above JLabel, supplying the ImageIcon as

the argument to the constructor;
• add the JLabel to the application frame;
• remove the call to repaint;
• remove the re-definition of paint.

Example (of lines that need to be added)

 JLabel imageLabel; //Amongst initial declarations.
...
imageLabel = new JLabel(image);
add(imageLabel,BorderLayout.CENTER);

The resultant output will be virtually identical to that shown in Figure 12.1.

Multimedia 365

12.2 Transferring Media Files

Unfortunately, there is no Serializable sound class corresponding to the ImageIcon
class for images, so we need a different transfer method for sound files. One viable
method involves transferring the file as an array of bytes (which is Serializable,
since it is a stream of primitive-type elements). This method can also be applied to
graphics files, which means that we can use the same method to transfer files that
may be of mixed types. In some applications, this is likely to be very useful.
Adopting a client-server approach again, the steps required at each end of the
transmission will be considered in turn...

Server

1. Create a Scanner and associate it with the input stream from the socket
connected to the client.

2. Create an ObjectOutputStream associated with the above Socket object.
3. Create a FileInputStream, supplying the name of the image/sound file as the

single argument to the constructor.
4. Create a File object from the file name and use File method length to determine

the size of the file. (The File object is not needed after this, so it can be
anonymous.)

5. Convert the long value from step 3 into an int and declare a byte array of this
size. (Method length has to return a long, but a byte array will accept only an int
for specifying its size.)

6. Use the FileInputStream object's read method to read the contents of the
FileInputStream into the byte array. (The byte array is supplied as the single
argument to this method.)

7. Use method writeObject of the ObjectOutputStream created in step 1 to send the
byte array to the client.

Client

1. Create an ObjectInputStream and a PrintWriter associated with the relevant
Socket object.

2. Use the PrintWriter object to send a request to the server.
3. Use the readObject method of the ObjectInputStream to receive a file from the

server.
4. Typecast the object received in step 3 (from type Object) into byte[].
5. Create a FileOutputStream object, supplying a string file name for the file with

which the FileOutputStream is to be associated.
6. Use the FileOutputStream object's write method to fill the file, supplying the

name of the byte array as the argument to this method.

Hopefully, all of this will fall into place when you see the code for the following
example...

366 An Introduction to Network Programming with Java

Example

In this example, a server accepts connections from clients and returns to each client
either an image file called beesting.jpg (if the client sent the single-word request
'IMAGE') or a sound file called cucko.au (if the client sent the request 'SOUND').
Upon receipt of an image, the client saves it in a file called image.jpg (assuming, for
simplicity's sake, that we know the file is going to be one in this format). Upon
receipt of a sound file, the client saves it with the name sound.au (again assuming
that we know the file is going to be one in this format).
 In the code that follows, the (now familiar?) convention of commenting in bold
type each of the lines associated with one of the steps described above has been
followed. The processing of the file to be transmitted (whether it be the image file or
the sound file) is handled by method sendFile, whilst the processing of the received
file is handled by method getFile.

Here's the code for the server...

import java.io.*;
import java.net.*;
import javax.swing.*;
import java.util.*;

public class MediaServer
{
 private static ServerSocket serverSocket;
 private static final int PORT = 1234;

 public static void main(String[] args)
 {
 System.out.println("Opening port...\n");

 try
 {
 serverSocket = new ServerSocket(PORT);
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to attach to port!");
 System.exit(1);
 }

 do
 {
 try
 {
 Socket link = serverSocket.accept();

Multimedia 367

 //Step 1...
 Scanner inStream =
 new Scanner(link.getInputStream());

 //Step 2...
 ObjectOutputStream outStream =
 new ObjectOutputStream(
 link.getOutputStream());

 String message = inStream.nextLine();

 if (message.equals("IMAGE"))
 sendFile("beesting.jpg", outStream);
 if (message.equals("SOUND"))
 sendFile("cuckoo.au", outStream);
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 }while (true);
 }

 private static void sendFile(String fileName,
 ObjectOutputStream outStream) throws IOException
 {
 //Step 3...
 FileInputStream fileIn =
 new FileInputStream(fileName);

 //Step 4...
 long fileLen = (new File(fileName)).length();

 //Step 5...
 int intFileLen = (int)fileLen;
 //Step 5 (cont'd)...
 byte[] byteArray = new byte[intFileLen];

 //Step 6...
 fileIn.read(byteArray);

 //Now that we have finished
 //with the FileInputStream...
 fileIn.close();

 //Step 7...
 outStream.writeObject(byteArray);
 outStream.flush();

368 An Introduction to Network Programming with Java

 }
}

Now for the client code...

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

public class MediaClient
{
 private static InetAddress host;
 private static final int PORT = 1234;

 public static void main(String[] args)
 {
 try
 {
 host = InetAddress.getLocalHost();
 }
 catch(UnknownHostException uhEx)
 {
 System.out.println("Host ID not found!");
 System.exit(1);
 }

 try
 {
 Socket link = new Socket(host,PORT);

 //Step 1...
 ObjectInputStream inStream =
 new ObjectInputStream(
 link.getInputStream());

 //Step 1 (cont'd)...
 PrintWriter outStream =
 new PrintWriter(
 link.getOutputStream(),true);

 //Set up stream for keyboard entry...
 Scanner userEntry = new Scanner(System.in);

 System.out.print(
 "Enter request (IMAGE/SOUND): ");

Multimedia 369

 String message = userEntry.nextLine();
 while(!message.equals("IMAGE")
 && !message.equals("SOUND"))
 {
 System.out.println("\nTry again!\n");
 System.out.print(
 "Enter request (IMAGE/SOUND): ");
 message = userEntry.nextLine();
 }

 //Step 2...
 outStream.println(message);

 getFile(inStream,message);

 link.close();
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 catch(ClassNotFoundException cnfEx)
 {
 cnfEx.printStackTrace();
 }
 }

 private static void getFile(
 ObjectInputStream inStream, String fileType)
 throws IOException, ClassNotFoundException
 {
 //Steps 3 and 4...
 //(Note the unusual appearance of the typecast!)
 byte[] byteArray = (byte[])inStream.readObject();
 FileOutputStream mediaStream;

 if (fileType.equals("IMAGE"))
 //Step 5...
 mediaStream =
 new FileOutputStream("image.gif");
 else
 //Must be a sound file...
 //Step 5...
 mediaStream =
 new FileOutputStream("sound.au");

 //Step 6...
 mediaStream.write(byteArray);

370 An Introduction to Network Programming with Java

 }
}

If the request were for an image file and we wanted to display that image in our
application (without saving it to file), then we could create an ImageIcon object
holding the image by using an overloaded form of the ImageIcon constructor that
takes a byte array as its single argument:

.
 ImageIcon image = new ImageIcon(byteArray);

Since ways of displaying image files once they have been downloaded have already
been covered, these methods will not be repeated here. However, we have not yet
looked at how sound files may be played. The next section deals with this issue.
 As might be expected, the above method also allows us to send and receive video
files. The playing of such files, however, is not possible with the core J2SE and will
be covered in section 12.4.

12.3 Playing Sound Files

The standard Java classes provide two basic ways of playing sound files (otherwise
known as audio clips):

• the play method of class Applet (from the java.applet package);
• the play method of the AudioClip interface (also from the applet

package).

The former should be used for a sound that is to be played just once from an applet.
For a sound that is to be played more than once or a sound that is to be played from
an application (rather than from an applet), an AudioClip reference should be used.
Since we shall be concerned only with applications in this chapter, no further
mention will be made of the play method of class Applet here.

It may seem strange to use a class from package applet within an application, but
AudioClip allows us to do just this. What is even stranger is that we use a method of
class Applet to generate the AudioClip object! Method newAudioClip of class Applet
takes a URL as its single argument and generates the required AudioClip object. The
reason that we are able to use this class in an application, of course, is that it is a
static method (and so can be used without the creation of an Applet object). Here
is the signature for method newAudioClip:

 public static final AudioClip newAudioClip(URL url)

The fact that a URL has to be supplied as the argument does not mean that we must
refer to a remote file (though we can, as will be seen with applets in the next
chapter). We can refer to a local file by supplying a URL that uses the file protocol.
For example:

Multimedia 371

AudioClip clip =
 Applet.newAudioClip("file:///c:/mydir/mysound.au");
(Note the use of the Applet class name, since the method is static.)

Once the clip has been created, the following three methods are available and serve
purposes that are self-evident from their names:

• void play();
• void stop();
• void loop().

These three methods may then be made use of in a Java GUI by associating them
with different buttons.

Example

This simple example provides three buttons that will allow the user to play, stop and
continuously loop through a specified sound file. (The third option is likely to get
annoying pretty quickly!) The code is very straightforward and requires almost no
commenting.

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.net.*;

public class SimpleSound extends JFrame
 implements ActionListener
{
 private AudioClip clip;
 private JButton play, stop, loop;
 private JPanel buttonPanel;

 public static void main(String[] args)
 {
 SimpleSound frame = new SimpleSound();

 frame.setSize(300,200);
 frame.setVisible(true);

 frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
 }

 public SimpleSound()
 {
 setTitle("Simple Sound Demo");

372 An Introduction to Network Programming with Java

 try
 {
 //Obviously, the path given below is simply an
 //example and could be anywhere in the user's
 //file system.
 clip = Applet.newAudioClip(new URL(
 "file:///C:/Sounds/cuckoo.au"));
 }
 catch(MalformedURLException muEx)
 {
 System.out.println("*** Invalid URL! ***");
 System.exit(1);
 }

 play = new JButton("Play");
 play.addActionListener(this);
 stop = new JButton("Stop");
 stop.addActionListener(this);
 loop = new JButton("Loop");
 loop.addActionListener(this);

 buttonPanel = new JPanel();
 buttonPanel.add(play);
 buttonPanel.add(stop);
 buttonPanel.add(loop);

 add(buttonPanel,BorderLayout.SOUTH);
 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == play)
 clip.play();
 if (event.getSource() == stop)
 clip.stop();
 if (event.getSource() == loop)
 clip.loop();
 }
}

There is very little to see with this simple interface, of course, but what there is is
shown in Figure 12.2.

12.4 The Java Media Framework

As noted at the start of this chapter, the playing of video files requires the
downloading of an extra API: the Java Media Framework (JMF). This API may be

Multimedia 373

downloaded (for free) from the following URL:

 http://java.sun.com/products/java-media/jmf/2.1.1/download.html

Figure 12.2 Interface for program SimpleSound.

Class Player from the JMF is capable of playing all the audio formats already
mentioned, as well as a number of others. In addition, it can play a variety of video
formats, such as AVI (.avi files), GSM (.gsm files), MPEG-1 (.mpg files) and Apple
QuickTime (.mov files). (Unfortunately, it does not also display image files.) This
class is held in package javax.media, which should be imported into application
programs. The basic steps required for a program that is to play a sound or video file
are given below.

1. Accept a file name (including the path, if the file is not in the same directory as
the program) and create a File object, supplying the file name as the constructor's
single argument.

2. Use the File class’s exists method to check that the file exists.
3. Create a Player object via static method createPlayer of class Manager (also

from package javax.media). This method takes a single URL argument that can
be generated via the File class’s toURL method.

4. Use the exception-handling mechanism (catching any Exception object) to check
that the file is of a valid type.

5. Provide a ControllerListener (package javax.media) for the media player.
6. Supply a definition for method controllerUpdate of the above ControllerListener

object. This method (which takes a ControllerEvent argument) will usually
generate any required visual and/or control panel components via Player
methods getVisualComponent and getControlPanelComponent and then add

374 An Introduction to Network Programming with Java

those components to the content pane. As its last step, it should execute the
doLayout method on the content pane.

7. Execute the Player object’s start method.

Class ControllerEvent actually has 21 (!) direct and indirect subclasses, but the one
that is likely to be of most use is class RealizeCompleteEvent. This is the type of
object passed to controllerUpdate when the Player object has determined the clip’s
medium type and has loaded the clip. Inbuilt operator instanceof may be used to
check the specific type of the ControllerEvent object that has been generated.
Method getVisualComponent will return null for an audio clip (since an audio clip
has no associated display component) and non-null for a video clip.

Example

The following program creates a Player object that plays any audio or video clip for
which the name is entered by the user. As ever, the program lines corresponding to
the above steps are indicated by emboldened comments that specify the associated
step numbers.
 Note that the JMF API has not been updated to allow adding of its GUI
components directly to the application frame, as was introduced for all AWT and
Swing components in J2SE 5.0. Instead, it is necessary to get a reference to the
application's content pane (as a Container reference) and add GUI components that
are part of the JMF to the content pane (as was the practice for all GUI components
before J2SE 5.0). All other GUI components can, of course, be added directly to the
application frame.

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;

//Note the new import...
import javax.media.*;

public class MediaPlayer extends JFrame
 implements ActionListener, ControllerListener
//The application frame itself has undertaken to provide
//a definition for the controllerUpdate method of the
//ControllerListener interface.
{
 private JLabel prompt;
 private JTextField fileName;
 private JPanel inputPanel;

 private File file;

 //Here is the declaration for the central
 //media player object...

Multimedia 375

 private Player player;

 public static void main(String args[])
 {
 MediaPlayer frame= new MediaPlayer();

 frame.setSize(600, 400);
 frame.setVisible(true);

 frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
 }

 public MediaPlayer ()
 {
 setTitle("Java Media Player Frame");

 inputPanel = new JPanel();
 prompt = new JLabel("Audio/video file name: ");
 fileName = new JTextField(25);
 inputPanel.add(prompt);
 inputPanel.add(fileName);
 add(inputPanel,BorderLayout.NORTH);
 fileName.addActionListener(this);
 }

 public void actionPerformed(ActionEvent event)
 {
 try
 {
 getFile();
 createPlayer();
 }
 catch(FileNotFoundException fnfEx)
 {
 JOptionPane.showMessageDialog(this,
 "File not found!", "Invalid file name",
 JOptionPane.ERROR_MESSAGE);
 }

 //Step 4...
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(this,
 "Unable to load file!", "Invalid file type",
 JOptionPane.ERROR_MESSAGE);
 }
 }

376 An Introduction to Network Programming with Java

 private void getFile() throws FileNotFoundException
 {
 //Step 1...
 file = new File(fileName.getText());

 //Step 2...
 if (!file.exists())
 throw new FileNotFoundException();
 }

 private void createPlayer() throws Exception
 {
 //Step 3...
 player = Manager.createPlayer(file.toURL());
 //Note use of File class's toURL method to
 //convert a File object into a URL object.

 //Step 5...
 player.addControllerListener(this);

 //Step 7...
 player.start();
 fileName.setEnabled(false);
 }

 //Step 6...
 public void controllerUpdate(ControllerEvent event)
 {
 Container pane = getContentPane();
 //Needed for adding JMF GUI components to the
 //application (as explained before example).

 //Use operator instanceof to check (sub-)type
 //of ControllerEvent object...
 if (event instanceof RealizeCompleteEvent)
 {
 //Attempt to create a visual component for the
 //file type...
 Component visualComponent =
 player.getVisualComponent();

 if (visualComponent != null)
 //(Must be a video clip.)
 pane.add(visualComponent,
 BorderLayout.CENTER);

 Component controlsComponent =
 player.getControlPanelComponent();

Multimedia 377

 if (controlsComponent != null)
 pane.add(controlsComponent,
 BorderLayout.SOUTH);

 //Need to tell content pane to rearrange its
 //components according to the new layout...
 pane.doLayout();
 }
 }
}

Example output is shown in Figures 12.3 and 12.4.

 If subsequent files are to be loaded, then the previous Player object must be closed
down via the following steps:

• retrieve the visual and control panel components via
getVisualComponent and getControlPanelComponent;

• execute method remove of the container pane for each of the above
components (e.g., pane.remove(visualComponent););

• execute the Player object’s stop method.

(Remember to check that the Player object is non-null first!)

Figure 12.3 Video file output for program MediaPlayer.

Microsoft product screenshot reprinted with permission from Microsoft Corporation.

378 An Introduction to Network Programming with Java

Figure 12.4 Audio file output for program MediaPlayer.

Multimedia 379

Exercises

You will find sound, image and video files that may be used with these and other
multimedia programs on the CD-ROM supplied with this text.

12.1 Compile ImageServer.java and ImageClient.java from the first example in
this chapter. Make sure that file beesting.jpg is accessible to the server and
then run this application.

12.2 Modify MediaClient.java so that it creates an ImageIcon from the byte array
received from the server and then uses a JLabel to display the image received.
Compile the source code for the two program files (MediaClient.java and
MediaServer.java) and then run the application.

12.3 Modify the code for SimpleSound.java so that the user can specify the number
of 'cuckoos' when 'play' is pressed. (For separate chimes, you will need to
insert an empty delay loop with a very large upper count value.)

12.4 (i) Compile and run the MediaPlayer program from the end of the chapter,
experimenting with the video and sound files supplied on the CD-ROM.

 (ii) Modify the above program so that the user can repeatedly specify further
sound and/or video files (without necessarily waiting for the previous file to
finish playing).

13 Applets

Learning Objectives
After reading this chapter, you should:

• know what applets are and how they are used;
• be aware of the internal sequence of method invocations that occurs

when an applet is executed;
• know the fundamental differences between Swing applets and pre-Swing

applets;
• be aware of the extra requirements for running Swing applets;
• know how to use images in both Swing and pre-Swing applets;
• know how to use sound in applets.

As was mentioned at the start of the last chapter, Java applets were responsible for
much of the initial popularisation of the Java language. This is because Java was
introduced at a time when the World Wide Web was in its infancy and needed a
platform-independent language in order to achieve its full potential. Java, through
its applets, satisfied this need. This led to a large number of users thinking of Java
entirely in terms of applets for the first few years of the language's existence.
Indeed, many of the early Java authors covered Java exclusively (or very largely) in
terms of applets. As the reader who has worked through the preceding twelve
chapters of this book cannot fail to appreciate, there is far, far more to Java than just
applets. In fact, what can be done with applets is only a subset of what can be done
with Java applications, largely due to security restrictions that are placed on applets.
However, this does not mean that Java applications can be used to replace applets.
What, then, are applets?
 Java applets are programs designed to be run from HTML documents by Java-
aware Web browsers. They are server-side entities that need to be downloaded and
run by the user's Web browser when the HTML documents (the Web pages)
encapsulating them are referenced This being the case, it is important that the user is
not discouraged from accessing the associated Web pages by irritatingly long
download times. Consequently, applets are usually very small programs performing
very specific tasks. Unlike a Java application, an applet must have a GUI, because
it always runs in a graphical environment (the environment provided by a Web
browser).

13.1 Applets and JApplets

Though an applet must have a GUI, its containing class does not extend JFrame.
This is hardly surprising, of course, since applets pre-date the Swing classes, but the
applet's containing class does not extend class Frame either. Before the Swing
classes appeared, an applet consisted of a class that extended class Applet (from

Applets 381

package java.applet). The introduction of the Swing classes brought in class JApplet
(package javax.swing), which extends class Applet and makes use of the other
Swing classes. Thus, later applets should extend class JApplet. Unfortunately, there
are major differences of operation between applets that use only pre-Swing classes
and those that use the Swing classes (henceforth referred to as ' pre-Swing applets'
and 'Swing applets' respectively in this text). 'Differences in operation' is actually
putting it very mildly. A lot of Swing applets will simply not work in some of the
earlier versions of Internet Explorer and Netscape! However, this problem has been
eradicated in the latest versions of the major browsers, as will be seen in the next
section.

13.2 Applet Basics and the Development Process

When developing applets, it can be quite tedious having to go into and out of a Web
browser in order to access the Web page containing the applet as changes are made
to that applet. In recognition of this fact, Sun provides a utility program called the
appletviewer as part of the J2SE. This utility executes an applet when an HTML
document containing the applet is opened by the program. The appletviewer itself is
executed from a command window and must be supplied with the name of the
appropriate HTML file as a command line parameter. For example:

 appletviewer example.html

Class Applet (and, through it, class JApplet) extends Panel, rather than class Frame.
The fact that an applet is a Panel object is a deliberate design decision, related to
security. This means that an applet looks like part of an HTML page, rather than a
standalone application. For example, the size of the applet window is fixed. This
prevents programmers from spoofing users. If an applet were an extension of a
JFrame, it could be made to resemble an application residing on a client's system
that could then accept data from the user and transmit it to its host system. Though a
frame window can be created from within an applet (simply by instantiating class
JFrame), the browser adds a warning message to any such window.
 Applets can respond to events, but do not have a main method to drive them.
Instead, they are under the control of the browser or the appletviewer. As with GUI
applications, the AWT package (java.awt) should be imported into applets. For
Swing applets, of course, package javax.swing should also be imported. In pre-
Swing applets, the programmer must place the required drawing calls inside the
inbuilt applet method paint. This method takes a Graphics object as its single
argument and is not called directly by the applet, but is executed by the Web
browser. In Swing applets, however, required components are added to the applet's
surface within method init (also executed implicitly by the browser) and no
painting should be specified (though there is nothing that actually prevents us from
doing so).

382 An Introduction to Network Programming with Java

Example

Taking the simplest possible example, we'll create an applet that displays a greeting
to the user, employing each of the above methods in turn...

• Method 1 (pre-Swing)

In order to display text upon an applet, method drawString of the Graphics
argument supplied to method paint is invoked. This method takes three arguments:

• the message to be displayed (as a String);
• the x-coordinate of the top left corner of the display position (as an int);
• the y-coordinate of the top left corner of the display position (as an int).

Now for the code...

import java.applet.*;
import java.awt.*;

public class AppletGreeting1 extends Applet
{
 public void paint(Graphics g)
 {
 g.setFont(new Font("Arial",Font.BOLD,24));
 g.drawString("Greetings!",100,75);
 }
}

Just as we would do for a Java application, we save this applet with the name
AppletGreeting1.java. We then compile it in the usual way:

 javac AppletGreeting1.java

However, before we can run it, we must place it in an HTML page via the
<APPLET> tag. This tag has 3 mandatory attributes (as well as a number of
optional ones):

• CODE (specifying the name of the applet's .class file);
• WIDTH (specifying the width of the applet, in pixels);
• HEIGHT(specifying height of the applet, in pixels).

As will be the case for all subsequent applets in this chapter, we shall employ a
minimal HTML page:

<HTML>
 <APPLET CODE = "AppletGreeting1.class"
 WIDTH = 300
 HEIGHT = 150>

Applets 383

 </APPLET>
</HTML>

If this HTML page is saved with the name Greeting1.html, then the contained applet
may be executed by loading the HTML page into the appletviewer with the
following command:

 appletviewer Greeting1.html

The output from this applet under the appletviewer, Firefox 1.5 and IE6 (Internet
Explorer 6) is shown in Figures 13.1, 13.2 and 13.3 respectively.

Figure. 13.1 Output from AppletGreeting1 when run under the appletviewer.

Figure 13.2 Output from AppletGreeting1 under Firefox 1.5.

384 An Introduction to Network Programming with Java

Figure 13.3 Output from AppletGreeting1 under Internet Explorer 6.

N.B. This example assumes that both Greeting1.html and AppletGreeting1.class are
in the current folder. If AppletGreeting1.class is in a sub-folder, then the CODE
attribute must specify the relative path. For example:

 CODE = "folder1\folder2\AppletGreeting1.class"

For a directory elsewhere, attribute CODEBASE must be used to specify that
directory. For example:

CODEBASE = "..\otherfolder"
(Attribute CODE must still also be used to specify the applet's .class file, of course.)

• Method 2 (Swing)

In order to avoid specifying painting onto the applet's window, we can use a JLabel
and add this to the applet (within method init, of course), just as we would do for
the application JFrame in a GUI application. Note the importing of package
javax.swing in the code below and the fact that the applet class now extends class
JApplet.

import java.awt.*;
import javax.swing.*;

public class AppletGreeting2 extends JApplet
{
 public void init()

Applets 385

 {
 JLabel message =
 new JLabel("Greetings!",JLabel.CENTER);

 //Default layout manager for JApplet is
 //BorderLayout...
 add(message,BorderLayout.CENTER);
 }
}

This applet (within its minimal HTML page Greeting2.html) runs without problem
in the appletviewer. The only notable difference, as can be seen in Figure 13.4, is
that the background of the applet body is grey (in contrast to the white background
with the corresponding pre-Swing applet).

Figure 13.4 Output from AppletGreeting2 under the appletviewer.

In order to run a Swing applet in a browser, we must have the Java Plug-in
installed and the browser must know that it is to use this plug-in (rather than the
JVM). Both Firefox and IE6 will automatically use the Java Plug-in when accessing
Swing applets. The output from each of these when referencing Greeting2.html is
shown in Figures 13.5 and 13.6. (Note the grey background once again, now
distinguishing the applet from the HTML page.)

13.3 The Internal Operation of Applets

There are three methods that are guaranteed to be executed when a pre-Swing applet
is started:

• init
• start
• paint

386 An Introduction to Network Programming with Java

Figure 13.5 Output from AppletGreeting2 under Firefox 1.5.

Figure 13.6 Output from AppletGreeting2 under IE6.

Empty versions of these methods are inherited and can be overwritten to provide the
required functionality. Not all applets require all three of these methods (as
demonstrated by AppletGreeting1 in Section 13.2), but their execution will always

Applets 387

occur in the sequence indicated above as the applet begins execution. Remember
that the applet code does not contain calls to these methods. Definitions of these
methods may be supplied by the programmer, but their execution is initiated
internally by the Web browser when it loads the applet. Let's examine the purpose
of each of these methods...
 As its name implies, init carries out any initialisation required by the applet, such
as initialisation of variables or loading of images. Method start is called after init
and also every time the browser returns to the HTML page containing the applet. It
is used for such things as starting/re-starting an animation or starting/re-starting
other threads. As witnessed in the AppletGreeting1 example, paint is used for
drawing on a pre-Swing applet. It is also called automatically every time the applet's
window needs to be repainted (e.g., after the window has been covered by another
window and is then uncovered). For many pre-Swing applets, only paint will be
required, as will be illustrated in the next example.
 Now that the reader is familiar with the basic creation of an applet (whether
Swing or pre-Swing), it seems appropriate to introduce a slightly more sophisticated
example. Since applets will usually make use of graphics and colours, the next
example illustrates some of these facilities (though still in a rather artificial way).

Example (Pre-Swing code first)

This example uses a combination of font selection, line drawing, rectangle drawing,
text placement and colour changes to give the reader a brief flavour of what can be
done in applets. As might be expected, methods also exist for drawing arcs, circles,
bar charts and a range of other shapes, but the purpose of this text is not to provide
comprehensive coverage of possible applet content. Rather, the intention is to
concentrate upon the network aspects of applets (i.e., how they may be created and
made accessible across a network, especially across the Internet). The code is
mostly self-explanatory, so little commenting is required here...

import java.applet.*;
import java.awt.*;

public class SimpleGraphics1 extends Applet
{
 public void paint(Graphics g)
 {
 //Specify typeface, style and point size for
 //the desired font...
 g.setFont(new Font("TimesRoman",Font.BOLD,36));

 g.setColor(Color.blue);
 g.drawString("Simple Applet Graphics",50,80);
 g.setColor(Color.red);

 //Specify coordinates of start and end of line...
 g.drawLine(50,85,410,85);

388 An Introduction to Network Programming with Java

 g.setFont(new Font("TimesRoman",Font.PLAIN,24));
 g.setColor(Color.magenta);
 g.drawString(
 "Here's my message in a box",110,150);
 g.setColor(Color.green);

 //Draw a rectangle in the above colour,
 //specifying upper left corner coordinates,
 //width and height...
 g.drawRect(100,120,280,50);
 }
}

Here is the minimal HTML code required to access the applet:

<HTML>
 <APPLET CODE="SimpleGraphics1.class"
 WIDTH = 500
 HEIGHT = 250>
 </APPLET>
</HTML>

When the above HTML page is referenced by the appletviewer, the resultant
output is as shown in Figure 13.7 (unfortunately, not in colour!). As might be
expected with this pre-Swing applet, very similar results are obtained in both
Firefox and IE6.

Figure 13.7 Output from applet SimpleGraphics1 under the appletviewer.

Applets 389

 For the Swing version, it is necessary to circumvent direct painting via the
following steps:

• create a subclass of JPanel (within the applet body) and place the
painting code inside method paintComponent of this class;

• create an object of this class inside the applet's init method;
• use method setContentPane of class JApplet to make the above

object the content pane for the applet.

Method paintComponent is executed automatically by the browser.

Here's the code...

import java.awt.*;
import javax.swing.*;

public class SimpleGraphics2 extends JApplet
{
 public void init()
 {
 ImagePanel pane = new ImagePanel();

 //Make above panel the current content pane...
 setContentPane(pane);
 }

 class ImagePanel extends JPanel
 {
 public void paintComponent(Graphics g)
 {
 g.setFont(
 new Font("TimesRoman",Font.BOLD,36));
 g.setColor(Color.blue);
 g.drawString("Simple Applet Graphics",50,80);
 g.setColor(Color.red);
 g.drawLine(50,85,410,85);
 g.setFont(
 new Font("TimesRoman",Font.PLAIN,24));
 g.setColor(Color.magenta);
 g.drawString(
 "Here's my message in a box",110,150);
 g.setColor(Color.green);
 g.drawRect(100,120,280,50);
 }
 }
}

390 An Introduction to Network Programming with Java

Output from the browsers is as for the pre-Swing version (apart from the grey applet
background). The output from IE6 is shown in Figure 13.8.

Figure 13.8 Output from the SimpleGraphics1 applet under IE6.

 The above example does little more than could be achieved with HTML alone. In
particular, there is no interaction with the user. The next example is a rather more
practical applet that involves some interaction with the user.

Example

This Swing applet accepts a Fahrenheit temperature from the user and converts it
into the corresponding Celsius temperature. Note that this program is called
FahrToCelsius2, even though there is no FahrToCelsius1. This is purely to allow
this applet to be associated more obviously with the other Swing applets. Following
the convention established in earlier examples, the associated minimal HTML file
(not shown below) will have the same name as the applet, but with a suffix of .html.

import java.awt.*;
import javax.swing.*;

public class FahrToCelsius2 extends JApplet
{
 private String fahrString;
 private float fahrTemp, celsiusTemp;

 public void init()

Applets 391

 {
 //Prompt user for a temperature and
 //accept value...
 fahrString = JOptionPane.showInputDialog(
 "Enter temperature in degrees Fahrenheit");

 //Convert string into a float...
 fahrTemp = Float.parseFloat(fahrString);

 //Carry out the conversion...
 celsiusTemp = (fahrTemp–32)*5/9;

 //Set up the response within a JLabel...
 JLabel message = new JLabel(
 "Temperature in degrees Celsius: "
 + celsiusTemp,JLabel.CENTER);

 //Add the above label to the applet...
 add(message,BorderLayout.CENTER);
 }
}

Sample output for Firefox is shown in Figures 13.9 and 13.10.

Figure 13.9 User entry into applet FahrToCelsius2 under Firefox 1.5.

392 An Introduction to Network Programming with Java

Figure 13.10 Final output from applet FahrToCelsius2 under Firefox 1.5.

13.4 Using Images in Applets

As noted in the previous chapter, classes Image (package java.awt) and ImageIcon
(package javax.swing) are both used for holding and manipulating images. Either
may be used on its own, but ImageIcon is particularly useful for loading an image
into an application from the current directory. In theory, ImageIcon should be just
as useful in applets. However, there is a problem that considerably restricts the
usefulness of ImageIcons in applets. Since explanation of this problem involves a
comparison with the corresponding technique for using class Image, however, it is
appropriate to consider the use of this latter class first...

13.4.1 Using Class Image

Image is an abstract class, so we cannot directly create an instance of this class, but
we can use an Image reference for the image that is downloaded. (To achieve
platform independence, each Java platform provides its own subclass of Image for
storing information about images. As might be expected, this platform-dependent
subclass is inaccessible by application programmers.) Method getImage of class
Applet is used to download images. This method returns a reference to an Image
object and takes two arguments:

• the URL of the image's location;
• the file name of the image.

Applets 393

If the image file is in the same directory as the applet's HTML file, then method
getDocumentBase (of class Applet) can conveniently provide the required URL
without infringing any security restrictions. For example:

 Image image = getImage(getDocumentBase(),"pic.gif");

Method getImage uses a separate thread of execution, allowing the program to
continue while the image is being loaded.

In order to display the image on the applet once it has been downloaded, we use
the drawImage method of class Graphics. This method takes four arguments:

• a reference to the image;
• the x-coordinate of the upper-left corner of the image;
• the y-coordinate of the upper left corner of the image;
• a reference to an ImageObserver.

The last argument specifies an object upon which the image is to be displayed
(usually = this, for the current applet). An ImageObserver is any object that
implements the ImageObserver interface. Since this interface is implemented by
class Component, one of Applet's (and JApplet's) indirect superclasses, we do not
need to specify ‘implements ImageObserver’ for our applets.

Example (Pre-Swing)

This example simply loads and displays an image that is located in the same folder
on the Web server as that holding the applet's associated HTML file.

import java.awt.*;
import java.applet.*;

public class ImageTest1a extends Applet
{
 private Image image;

 public void init()
 {
 image =
 getImage(getDocumentBase(),"cutekittie.gif");
 }

 public void paint(Graphics g)
 {
 //Draw image in top left corner of applet, using
 //applet itself as the ImageObserver...
 g.drawImage(image, 0, 0, this);
 }
}

394 An Introduction to Network Programming with Java

The results of submitting the above applet's HTML page to Firefox and IE6 are
shown in Figures 13.11 and 13.12 respectively.

Figure 13.11 Output from applet ImageTest1a under Firefox.

Figure 13.12 Output from applet ImageTest1a under IE6.

Applets 395

As an alternative to using method getDocumentBase (which returns a URL
reference), we may create our own URL object directly from the image file's path
and use this as the first argument to method getImage. For example:

image =
 getImage(new URL("http://somesite/pics/"),"pic.gif");
(Note that the '/' at the end of the URL path is mandatory.)

The above syntax may be abbreviated slightly by concatenating the path and file
name into one string and then using an overloaded form of getImage that simply
takes a URL argument:

image =
 getImage(new URL("http://somesite/pics/pic.gif"));

In practice, though, most sites have firewalls that prohibit applets from having such
open access to their file systems and exceptions of type
java.security.AccessControlException will be generated if such access is attempted.
 Yet another variation in the syntax for accessing the image file is to use the file
protocol in the argument to the URL constructor. For example:

image =
 getImage(new URL("file:///c:/webfiles/pics/pic.gif"));

As might be expected, this also does not allow free access to a site's file system. In
fact, trying to access any directory other than the one containing the applet is likely
to generate a security exception. The above syntax (stipulating the directory
containing the associated applet) will be demonstrated in the next example. Firstly,
though, it needs to be pointed out that our code:

• should import package java.net;
• must deal with exceptions of type MalformedURLException.

The latter requirement means that we must introduce a try block and associated
catch clause (since we cannot change the signature of inherited method init to
make it throw this exception).

Example

This applet is very similar to the previous one, but now the image file is in a
specified directory. The required code changes are shown in emboldened type. Just
for a change, the image file used (and included on the accompanying CD-ROM,
with the other images) is an animated GIF. As usual, of course, a simple HTML
page will be required to access the applet.

import.java.awt.*;

396 An Introduction to Network Programming with Java

import java.applet.*;
import java.net.*;

public class ImageTest1b extends Applet
{
 private Image image;

 public void init()
 {
 try
 {
 image =
 getImage(new URL(
 "file:///d:/Applet Stuff/"
 + "Pre-Swing/earth.gif"));
 /*
 Obviously, you will need to change the above
 URL to match up to your local directory
 structure if you wish to test the operation
 of this applet.
 */
 }
 catch (MalformedURLException muEx)
 {
 System.out.println("Invalid URL!");
 System.exit(1);
 }
 }

 public void paint(Graphics g)
 {
 g.drawImage(image,0,0,this);
 }
}

 This applet runs without problem in the appletviewer and the two browsers, but
only if both applet file and image file are in the same directory as the associated
HTML file. (Output is shown in Figures 13.13 and 13.14.) If the files are in
different directories, a security exception is generated. This would appear to make
the use of a path redundant, of course. Indeed, it turns out that using the string
"file:///d:earth.gif" works just as well as using the full path "file:///d:/Applet
Stuff/Pre-Swing/earth.gif" in the appletviewer. However, the use of the abbreviated
string fails to work in each of Firefox and IE6, even though the message 'Applet
ImageTest1b started' is still displayed in the information bar at the foot of each
browser window (as shown for IE6 in Figure 13.15).

As will be seen in the next sub-section, ImageIcons offer no more flexibility than
Images (and, in fact, are even more restrictive). It would appear that the only
reliable way of using images in applets is to locate both images and applets in the

Applets 397

same directory on the Web server. In most cases, however, this is unlikely to be a
particularly inconvenient restriction.

Figure 13.13 Output from applet ImageTest1b under the appletviewer.

Figure 13.14 Output from applet ImageTest1b under IE6.

13.4.2 Using Class ImageIcon

Now we can return to consideration of the problem with ImageIcons referred to at
the start of Section 13.4...

The ImageIcon constructor has nine different signatures, one of which takes the
following two arguments:

• a URL, specifying the folder of the associated image;

398 An Introduction to Network Programming with Java

• the file name of the image.

Figure 13.15 Output from applet ImageTest1b under IE6 when path to image file removed.

It would appear from this that we can make use of method getDocumentBase to
specify the directory for an image file that is located in the same folder on the Web
server as the associated Web page (just as we did with method getImage in the
previous section).

Example

The applet below attempts to load an image (from the associated Web page's folder)
into an ImageIcon and then use the ImageIcon's paintIcon method to display the
image on the applet window.

import java.awt.*;
import javax.swing.*;
import java.net.*;

public class ImageTest2a extends JApplet
{
 private ImageIcon image;

 public void init()
 {
 image =
 new ImageIcon(getDocumentBase(), " earth.gif");

Applets 399

 }

 public void paint(Graphics g)
 {
 image.paintIcon(this,g,0,0);
 }
}

Surprisingly, the above applet produces an empty display in the appletviewer and in
the browsers!

Now consider the code in the applet below. This is very similar to the code above,
but declares an Image reference called image (changing the name of the ImageIcon
object to icon) and replaces the line

 image = new ImageIcon(getDocumentBase(), "earth.gif");

with the following two lines:

 image = getImage(getDocumentBase(), "earth.gif");
 icon = new ImageIcon(image);

Thus, instead of the call to getDocumentBase being within the constructor for the
ImageIcon object, it is used by method getImage to return an Image object. The
reference to this object is then used to construct an ImageIcon for the image.
Essentially, the only difference is that it is now getImage that is making the call to
getDocumentBase, rather then the ImageIcon constructor.

import java.awt.*;
import javax.swing.*;
import java.net.*;

public class ImageTest2b extends JApplet
{
 private Image image;
 private ImageIcon icon;

 public void init()
 {
 image = getImage(getDocumentBase(), "earth.gif");
 icon = new ImageIcon(image);
 }

 public void paint(Graphics g)
 {
 icon.paintIcon(this,g,0,0);
 }
}

400 An Introduction to Network Programming with Java

Though the changes would appear to be little more than superficial, the new
applet works flawlessly under the appletviewer, Firefox and IE6! The output from
Firefox is shown in Figure 13.16.

Figure 13.16 Output from applet ImageTest2b under Firefox 1.5.

 It might be concluded from the above results that only class Image should be used
for handling images in applets, but this is not so. There are occasions when only
ImageIcons will do the job. For example, ImageIcons can be used in the
constructors for JLabels and JButtons, but Images cannot.

13.5 Scaling Images

An overloaded form of method drawImage takes six arguments, the two extra
arguments being positioned immediately before the ImageObserver argument.
These extra arguments specify the width and height of the image. The size of the
image is automatically scaled to fit these dimensions. For example:

 g.drawImage(image,100,100,200,150,this);

By using methods getWidth and getHeight of class Component, the image may also
be drawn relative to the size of the applet, which can enhance the layout of the Web
page significantly. For example:

g.drawImage(
 image,50,60,getWidth()-100,getHeight()-120,this);

Applets 401

In the above example, the image will be scaled to fit within an area that is 50 pixels
in from left and right sides of the applet window and 60 pixels in from the top and
bottom of the window. ImageIcons have no direct scaling mechanism. However,
ImageIcon has a getImage method that returns an Image reference which can then
be used as above by drawImage.

13.6 Using Sound in Applets

As noted in the previous chapter, the standard Java classes provide two methods for
the playing of audio clips:

• method play of class Applet;
• method play of the AudioClip interface.

Since we were concerned solely with applications (as opposed to applets) in the
previous chapter, only the latter method was of any interest to us. This is still likely
to be of greater use to us in applets, but the former method is convenient for a sound
that needs to be played only once. This method has the following two forms:

• public void play(
 URL <location>, String <soundFile>)
• public void play(URL <soundURL>)

For the first version, the first argument is normally the value returned by a call to
the applet’s getDocumentBase method or its getCodeBase method. For example:

 play(getDocumentBase(), "bell.au");

For a sound that is to be played more than once, an AudioClip reference should be
used. The address to be held in this reference is returned by method getAudioClip of
class Applet. This method has two forms that take the same arguments as the above
signatures for method play:

• public AudioClip getAudioClip(
 URL <location>, String <soundFile>)
• public AudioClip getAudioClip (URL <soundURL>)

Once the clip has been loaded via getAudioClip, the same three methods that were
listed in the previous chapter are available for manipulating the sound file:

• void play();
• void stop();
• void loop().

402 An Introduction to Network Programming with Java

Example

The applet below provides three buttons that will allow the user to play, stop and
loop a specified sound file. It mirrors the SimpleSound application example from the
previous chapter and requires little commenting. To avoid having to circumvent the
applet’s security restrictions, the sound file is held in the same folder as the applet.
(For the same reason given in the explanation for the naming of FahrToCelsius2,
there is no SimpleSoundApplet1.)

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.net.*;

public class SimpleSoundApplet2 extends JApplet
 implements ActionListener
{
 private AudioClip clip;
 private JButton play, stop, loop;
 private JPanel buttonPanel;

 public void init()
 {
 try
 {
 clip = getAudioClip(
 new URL(getDocumentBase(),
 "cuckoo.wav"));
 }
 catch(MalformedURLException muEx)
 {
 System.out.println("*** Invalid URL! ***");
 System.exit(1);
 }

 play = new JButton("Play");
 play.addActionListener(this);
 stop = new JButton("Stop");
 stop.addActionListener(this);
 loop = new JButton("Loop");
 loop.addActionListener(this);

 buttonPanel = new JPanel();

 buttonPanel.add(play);

Applets 403

 buttonPanel.add(stop);
 buttonPanel.add(loop);

 add(buttonPanel,BorderLayout.SOUTH);
 }

 public void stop()
 {
 clip.stop(); //Prevents sound from continuing
 } //after applet has been stopped.

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == play)
 clip.play();
 if (event.getSource() == stop)
 clip.stop();
 if (event.getSource() == loop)
 clip.loop();
 }
}

Here's the code for the minimal Web page that will be used to contain the applet:

<HTML>
 <APPLET CODE="SimpleSoundApplet2.class"
 WIDTH = 300
 HEIGHT = 200>
 </APPLET>
</HTML>

The output from IE6 is shown in Figure 13.17.

404 An Introduction to Network Programming with Java

Figure 13.17 Output from SimpleSoundApplet2 under IE6.

Applets 405

Exercises

To complete the following exercises, you will require access to a Java-aware
browser. In order to run the Swing applets, this browser will also have to have the
Java Plug-In installed. This plug-in should have been installed automatically when
you installed J2SE.

13.1 From the CD-ROM accompanying this book, copy the .class and .html files
for the AppletGreeting1, SimpleGraphics1, ImageTest1a and ImageTest1b
examples, along with image files cute kittie.gif and earth.gif. Ensuring that
the files are in the current folder, load up each of the HTML files into the
appletviewer and your browser, in turn, observing the results.

13.2 (i) From the CD-ROM accompanying this book, copy the .class and .html

files for the AppletGreeting2, SimpleGraphics2, ImageTest2a, ImageTest2b,
FahrToCelsius2 and SimpleSoundApplet2 examples, along with sound file
cuckoo.au.

 (ii) Do the same for the six HTML files above as you did for the four HTML

files in exercise 13.1 (again ensuring that all files are in the current folder).
You should find that applet ImageTest2a will not run in either the
appletviewer or your browser.

For each of the next three exercises, you should create a minimal HTML page and
test this page in both the appletviewer (while developing) and your browser (for the
finished product).

13.3 Create a Swing applet with a single button that holds an image. (Use the
JButton constructor that takes an ImageIcon as its single argument.)
Whenever the button/image is pressed a single 'cuckoo' should sound.

13.4 Specifying an area of size 300 pixels x 300 pixels in your HTML file, create
an applet (Swing or pre-Swing) that holds an image that is positioned and
scaled so that it occupies an area 40 pixels in from each side of the applet
window. In order that the applet window can be distinguished from the Web
page, change the colour of the applet's background to any colour of your
choice.

13.5 Create an applet (either Swing or pre-Swing) that displays a simple drawing
of a house.

Appendix A
Structured Query Language (SQL)

SQL is a language for communicating with relational databases and originates in
work carried out by IBM in the mid-1970s. Since then, both ANSI (the American
National Standards Institute) and the ISO (International Standards Organisation)
have attempted to produce an SQL standard, with SQL3 being the latest, but most
users still working with SQL2. Though each major database vendor adds its own
specific extensions to 'standard' SQL, the most commonly required SQL statements
are widely accepted, with little or no variation between vendors. In this very brief
introduction to SQL, it is only these common statements that are of concern to us.
Please note that there is much more to SQL than can be covered in this brief
introduction, but this coverage will enable you to understand the contents of Chapter
7 and to create your own statements for the most common database manipulation
activities.
 In what follows, the Sales database from the exercises at the end of Chapter 7 will
be used for illustration purposes. Recall that this database had a single table called
Stock. Here's table Stock containing some test data:

Figure A.1 Test data contents of Stock.mdb.

SQL statements may be divided into two broad categories:

• Data Manipulation Language (DML) statements;
• Data Definition Language (DDL) statements.

It is primarily the first of these with which we shall be concerned, but each will be
covered below. Whether a DML statement or a DDL statement, every SQL statement
is terminated with a semi-colon. It is also conventional for the SQL keywords to
appear in upper case, attributes (fields) in lower case and table names in lower case
commencing with a capital letter.

A.1 DDL Statements

These are statements that affect the structure of a table by creating/deleting

SQL 407

attributes or whole tables. Since these activities are usually much more conveniently
and appropriately carried out via a GUI that is provided by the database vendor, not
much attention will be paid to these statements, but the syntax for each is shown
below, with examples relating to our Stock table.

A.1.1 Creating a Table

This is achieved via the CREATE TABLE statement. Syntax:

CREATE TABLE <TableName>(<fieldName> <fieldType>
 {,<fieldName> <fieldType>});

For example:

CREATE TABLE Stock(stockCode INTEGER,
 description VARCHAR(20),
 unitPrice REAL,
 currentLevel INTEGER,
 reorderLevel INTEGER);

Just to complicate things, some databases would use FLOAT,
DECIMAL(<n>,<d>) or NUMERIC instead of REAL above. (The 'n' and 'd' refer to
the total number of figures and number of figures after the decimal point
respectively.)

A.1.2 Deleting a Table

This is very straightforward via the DROP statement. Syntax:

DROP TABLE <TableName>;

For example:

DROP TABLE Stock;

A.1.3 Adding Attributes

The required statement is ALTER TABLE. Syntax:

ALTER TABLE <TableName> ADD <fieldName> <fieldType>
 {,<fieldName> <fieldType>};

For example:

ALTER TABLE Stock ADD supplier VARCHAR(30);

408 An Introduction to Network Programming with Java

A.1.4 Removing Attributes

As above, the required statement is ALTER TABLE, but now with a DROP clause.
Syntax:

ALTER TABLE <TableName> DROP <fieldName> {,<fieldName>};

For example:

ALTER TABLE Stock DROP supplier;

A.2 DML Statements

These statements manipulate the rows (or 'tuples') of a database table. The primary
DML statements are:

• SELECT
• INSERT
• DELETE
• UPDATE

DELETE must be used in combination with a WHERE clause, which contains a
Boolean expression that specifies which rows of the table are to be affected.
SELECT and UPDATE are also very often used with a WHERE clause for the same
purpose, but do not require one. If no WHERE clause is supplied, then the
SELECT/UPDATE acts upon all the rows of the specified table. The next few
sections give details and examples relating to the four statements above.

A.2.1 SELECT

As its name implies, this statement is used to select values from a table. It is by far
the most commonly used SQL statement. Basic syntax:

SELECT <fieldName> {,<fieldName>} FROM <TableName>
 [WHERE <condition>]};

This will return the named attribute(s) for all rows in the named table satisfying the
specified condition. Often, all attributes are required, so the asterisk character (*) is
provided to allow this requirement to be expressed in a shorthand form.

Examples

1. SELECT * FROM Stock;
Here, all attributes in all rows are returned.

SQL 409

2. SELECT stockCode, description FROM Stock;
Result returned for our test data:

111111 Pencil
333333 A4 pad narrow feint
444444 A4 pad wide feint
555555 Ruler
666666 Stapler

3. SELECT stockCode,currentLevel,reorderLevel FROM Stock
 WHERE currentLevel <= reorderLevel;
Result returned for our test data:

333333 121 150
555555 80 80

Keywords AND and OR can also be used, to produce compound conditions. For
example:

SELECT stockCode, unitPrice FROM Stock
 WHERE unitPrice > 1 AND unitPrice < 1.5;
(Does not have to be the same attribute in both sub-conditions.)

Result returned:

333333 1.45
444444 1.45

By default, the order will be ascending (which can be specified explicitly by adding
the ORDER BY clause with the qualifier ASC). If we want descending order, then
we can use the ORDER BY clause with the specifier DESC. For example:

SELECT * FROM Stock ORDER BY unitPrice DESC;

A.2.2 INSERT

This statement is used to insert an individual row into a table. Syntax:

INSERT INTO <TableName> [<fieldName>{,<fieldName>}]
 VALUES (<value>{,<value>});

If any attributes are missing, then the row created has default values for these. The
most common default value is NULL. If no attributes are listed, then values for all
attributes must be supplied. For example:

INSERT INTO Stock VALUES(222222,'Rubber',0.57,315,200);

410 An Introduction to Network Programming with Java

A.2.3 DELETE

This statement is used to delete one or more rows from a specified table. Syntax:

DELETE FROM <TableName> WHERE <condition>;

It is most commonly used to delete a single row from a table, usually by specifying
its primary key in the condition. For example:

DELETE FROM Stock WHERE stockCode = 222222;

Several rows may be deleted at once if multiple rows satisfy the condition. For
example:

DELETE FROM Stock WHERE unitPrice < 1;

A.2.4 UPDATE

This statement is used to modify one or more rows in a specified table. Syntax:

UPDATE <TableName> SET <fieldName = value>
 {,<fieldName = value >} [WHERE <condition>];

For example:

UPDATE Stock SET unitPrice = 1 WHERE unitPrice < 1;

This would cause the prices of pencils and rulers to rise from 32p and 69p
respectively to £1 each.

If all rows are to be affected, then the WHERE clause is omitted.

Appendix B
Deployment Descriptors for EJBs

Below is shown the basic syntax for a deployment descriptor file for use with an
Enterprise JavaBean. The use of opening and closing tags is the same here as it is in
HTML documents, so the reader is expected to be familiar with the nesting involved.
For ease of reference, the lines have been numbered, but note that these numbers are
not part of the file. In addition, entries of the format

 ...[Text]...

are simply either author's comments or indicate a value to be supplied and are also
not part of the file

1 <?xml version="1.0"?>

2 <!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-
jar_2_0.dtd">

3 <ejb-jar>
4 <enterprise-beans>
5 <session>
6 <description>
7 ...[Optional]...
8 </description>
9 <ejb-name>...[Bean name]...</ejb-name>
10 <home>...[Name and path of home interface]...</home>
11 <remote>...[Name and path of remote interface]...</remote>
12 <ejb-class>...[Name and path of bean class]...</ejb-class>
13 <session-type>...[Either Stateless or Stateful]...

</session-type>
14 <transaction-type>...[Usually Container]...

</transaction-type>
15 <env-entry>
16 <env-entry-name>...[Name of non-persistent variable]...
 </env-entry-name>
17 <env-entry-type>...[Variable's type]...</env-entry-type>
18 <env-entry-value>...[Initial value]...</env-entry-value>
19 </env-entry>
 ...[Lines 15-19 repeated for other non-persistent

variables]...
20 </session>
21 <entity>
22 <description>
23 ...[Optional]...
24 </description>
25 <ejb-name>...[Bean name]...</ejb-name>
26 <home>...[Name and path of home interface]...</home>
27 <remote>...[Name and path of remote interface]...</remote>
28 <ejb-class>...[Name and path of bean class]...</ejb-class>
29 <persistence-type>...[Container or Bean]...

</persistence-type>

412 An Introduction to Network Programming with Java

30 <prim-key-class>...[Name and path of primary key class]...
 </prim-key-class>
31 <reentrant>...[True or False]...</reentrant>
32 <cmp-version>...[Persistence version no.]...</cmp-version>
33 <abstract-schema-name>...[Name of bean schema]...
 </abstract-schema-name>
34 <cmp-field>
35 <field-name>...[Persistent data item]...</field-name>
36 </cmp-field>
 ...[Lines 34-36 repeated for other persistent data items]...
37 <primkey-field>...[Name of key field]...</primkey-field>
38 </entity>
 ...[Lines 21-38 repeated, for other entity beans]...
39 </enterprise-beans>

40 <assembly-descriptor>
41 <security-role>
42 <description>
43 ...[Optional]...
44 </description>
45 <role-name>....[Value]...</role-name>
46 </security-role>
 ...[Lines 41-46 repeated, for other security roles]...
47 <method-permission>
48 <role-name>...[Value]...</role-name>
49 <method>
50 <ejb-name>...[Bean name]...</ejb-name>
51 <method-name>...[Method name]...</method-name>
52 </method>
 ...[Lines 49-52 repeated, for other methods]...
53 </method-permission>
 ...[Lines 47-53 repeated, for other method permissions]...

54 <container-transaction>
55 <method>
56 <ejb-name>...[Bean name]...</ejb-name>
57 <method-name>...[Method name]...</method-name>
58 </method>
59 <trans-attribute>....[Value]...</trans-attribute>
60 </container-transaction>
 ...[Lines 54-60 repeated, for other method/transaction

 attribute associations]...
61 </assembly-descriptor>
62 </ejb-jar>

Lines 1 and 2 will not change, unless the version of XML or EJB changes. Line 2
shows the location of the file's Document Type Definition (DTD), which specifies
the required structure of the file.
The main body of the document is an <ejb-jar> element (lines 3-62), indicating the
type of file to which this document refers.
Lines 4-39 constitute the <enterprise-beans> element, which contains descriptions of
all the beans in this deployment. The file above shows a session bean (lines 5-20),
followed by an entity bean (lines 21-38), but could hold only one bean or include
additional beans.
Lines 9-12 and 25-28 specify the files making up the bean (session bean and entity
bean respectively).

Deployment Descriptors for EJBs 413

Lines 13 and 14 apply only to session beans. The purpose of the former is obvious,
while the latter indicates the granularity of transactions.
Lines 15-19(+) indicate variable(s) declared within the bean, but not saved to a
database.
Line 29 indicates whether persistence is the responsibility of the bean or the bean's
container.
Line 30 specifies the name of the class file defining the variable mapping to the
primary key in the associated database table.
Line 31 indicates whether or not the bean's code is re-entrant.
Line 32 specifies the version number of the container managed persistence (cmp)
model.
Line 33 specifies a schema name selected by the bean assembler (possibly the same
as the name of the bean).
Lines 34-36(+) show all the container-managed persistent (cmp) data items within
the bean.
Line 37 specifies the primary key field in the database table.
The <security-role> and <method-permission> sub-elements of the <assembly-
descriptor> element (lines 41-53) specify access permissions to methods, with the
values shown in the <role-name> elements indicating who will have the specified
access. These values are not reserved words and can be any names chosen by the
bean assembler.
Finally, sub-element <container-transaction> of the <assembly-descriptor> element
(lines 54-60) specifies (via <method> and <trans-attribute> elements) how methods
are associated with transactions. For example, a value of Required within a <trans-
attribute> element indicates that the associated method(s) must be executed within a
transaction.
In both the <method-permission> element and the <container-transaction> element,
a value of * indicates that all methods in the bean are affected.

Appendix C
Further Reading

Chapter 1

Harold ER. Java Network Programming (3rd Ed.).
O'Reilly, 2004.

Hughes M, Hughes C, Shoffner M, Winslow M. Java Network Programming.
Manning, 1997.

Chapter 2

Wigglesworth J, Lumby P. Java Programming: Advanced Topics (3rd Ed.).
Course Technology, Thomson, 2004.

Harold ER. Java Network Programming (3rd Ed.).
O'Reilly, 2004.

Chapter 3

Wigglesworth J, Lumby P. Java Programming: Advanced Topics (3rd Ed.).
Course Technology, Thomson, 2004.

Harold ER. Java Network Programming (3rd Ed.).
O'Reilly, 2004.

Travis GM. JDK 1.4 Tutorial.
Manning, 2002.

Core Java Technologies Tech Tips, September 9, 2003
Core Java Technologies Tech Tips, September 14, 2004
Above two articles available from: http://java.sun.com/developer/JDCTechTips

Chapter 4

Wigglesworth J, Lumby P. Java Programming: Advanced Topics (3rd Ed.).
Course Technology, Thomson, 2004.

Further Reading 415

Chapter 5

Harold ER. Java Network Programming (3rd Ed.).
O'Reilly, 2004.

Wigglesworth J, Lumby P. Java Programming: Advanced Topics (3rd Ed.).
Course Technology, Thomson, 2004.

Farley J. Java: Distributed Computing.
O'Reilly, 1998.

Chapter 6

Orfali R, Harkey D. Client/Server Programming with Java and CORBA (2nd Ed.)
Wiley, 1998.

http://developer.sun.com/developer/technicalArticles/RMI/rmi_corba

http://developer.sun.com/developeronlineTraining/corba/corba.html

http://www.omg.org/gettingstarted/corbafaq.html

http://java.sun.com/j2se/1.3/docs/guide/idl/jidlUsingCORBA.html

http://java.sun.com/j2se/1.3/docs/guide/idl/jidlMapping.html

http://java.sun.com/j2se/1.3/docs/guide/idl/tutorial

http://java.sun.com/products/rmi-iiop

http://www.omg.org/cgi-bin/doc?format/01-06-06

Chapter 7

White S et al. JDBC API Tutorial and Reference: Universal Data Access for the
Java 2 Platform (2nd Ed.).
Addison-Wesley, 1999.

Reese G. Database Programming with JDBC and Java (2nd Ed.).
O'Reilly, 2000.

http://java.sun.com/j2se/1.3/docs/guide/jdbc/

http://java.sun.com/docs/books/tutorial/jdbc/basics/

416 An Introduction to Network Programming with Java

http://developer.java.sun.com/developer/Books/JDBCTutorial/

http://www-128.ibm.com/developerworks/java/library/j-jdbcnew/

http://www.artima.com/lejava/articles/jdbc_four.html

Chapter 8

Hunter J, Crawford W. Java Servlet Programming(2nd Ed.).
O'Reilly, 2001.

Chapter 9

Bergsten H. JavaServer Pages.
O'Reilly, 2001.

Chapter 10

Doherty D, Leinecker R. JavaBeans Unleashed.
Sams, 1999.

Englander R. Developing Java Beans.
O'Reilly, 1997.

http://java.sun.com/products/Javabeans

Chapter 11

Monson-Haefel R. Enterprise JavaBeans (4th Ed.).
O'Reilly, 2004.

Chapter 12

Deitel PJ, Deitel HM. Java: How to Program (6th Ed.).
Prentice-Hall, 2004.

Chapter 13

http://java.sun.com/docs/books/tutorial/uiswing/components/applet.html

A

action tags in JSPs 283, 325, 330
ActiveX bridge 297
Apache Software Foundation 221, 235
Applet class 370-371, 380-381, 401
applets 380-405

appletviewer 381
AudioClip interface 370, 401
basics of 381-385
drawImage method 400
getDocumentBase method 393
getImage method 393
Graphics class 381
Image class 392-397
ImageIcon class 397-400
images

scaling 400-401
using 399-401

init method 385, 387
internal operation 385-392
Java Plug-In 385
paint method 381, 385, 387
paintIcon method 302
play method 401
sound, using 401-403
start method 385, 386

appletviewer 381
AudioClip interface 370, 401
available method 74

B

Bean Builder 298-301
Bean Development Kit (BDK) 298
bound properties in JavaBeans 317-324
buffers 75

Buffer class 77
clear method 80
flip method 80
remaining method 80

ByteBuffer class 77, 80, 86, 87
CharBuffer class 77
direct 75
DoubleBuffer class 78

FloatBuffer class 78
IntBuffer class 77
LongBuffer class 77
ShortBuffer class 78

ByteBuffer class 77, 80, 86, 87
allocate method 78
allocateDirect method 78
array method 86
get method 86
put method 86

C

channel method 80
channels 74, 80
command line parameters 101-102
Common Object Request Broker

Architecture (CORBA)
158-185

factory objects 173-183
Orb class 184
RMI-IIOP 184-185
skeletons 159
stubs 159
see also Interface Definition

Language (IDL)
configureBlocking method 76
Connection interface 191, 192
connectionless sockets 18
connection-orientated sockets 12
Context class 225
Cookie class 260, 261

methods 261-262
cookies 260-268

D

Data Access Objects (DAOs)
226-231

Data Definition Language (DDL) 406
statements 406-408

Data Manipulation Language (DML) 193,
199, 406

statements 408-410
Data Source Name (DSN) 190

Index

Database Connection Pool (DBCP) 221
databases

accessing via GUIs 207-210
accessing via JSPs 294, 326-330
see also Java Database Connectivity

datagram sockets 12, 18-28
DatagramPacket class 19, 20, 24

getAddress method 20
getPort method 20

datagrams 6
DatagramSocket class 18, 20, 24
DataSource interface, using 220-231
Daytime protocol 4, 28, 31
deadlock 65-67
deployment descriptor file 349, 411-413

tags in
<Context> tag 223
<DefaultContext> tag 223
<Host> tag 223
<Resource> tag 223
<ResourceParams> tag 223, 224

deployment of EJBs 349-351
direct access files 102
Domain Name System (DNS) 4-5, 10
drawImage method 400
DriverManager class 192, 193, 226

E

Echo protocol 4
ejbCreate method 355
ejbPostCreate method 355
Enterprise JavaBeans (EJBs) 189, 345-358

categories 345-346
client programs 351-353
CreateException class 347
deployment descriptor file 349, 411-413
ejbCreate method 355
ejbPostCreate method 355
entity beans 345, 353-358
findByPrimaryKey method 354
FinderException class 354
getInitialContext method 351
hashCode method 357
home interface 346, 347-349
message-driven beans 345-346
narrow method 351
packaging and deployment 349-351
Properties class 351
remote interface 346-347
RemoteException class 346, 354

session beans 345, 346
structure 346-349
stubs 347

entity beans 345, 353-358
entity EJBs 345, 353-358
EOFException class 110
error pages in JSPs 291-294
executeQuery method 193, 199
executeUpdate method 193, 199
Extensible Markup Language (XML) 349

F

File class 92
methods 97-98

file handling 91-135
binary files 91
direct access files 102
FileInputStream class 110, 365
FileOutputStream class 110, 365
FileReader class 92
FileWriter class 92, 94
flush method 94
I/O with GUIs 113-120
media, transferring 365-370
methods 97-99
random access files 102-109
redirection 99-100
Scanner class 92, 93
serial access files 91-97
serialisation 109-113

and vectors 123-131
String fields, bytes in 104
vectors 120-123

and serialisation 123-131
File Transfer Protocol (FTP) 2, 4
FileInputStream class 110, 365
FileOutputStream class 110, 365
FileReader class 92
FileWriter class 92, 94
Firefox 383
flush method 94
forName method 192

G

getAddress method 20
getAttribute method 250, 283-284
getByName method 9
getBytes method 87
getConnection method 192, 193

2 Index

getDocumentBase method 393
getImage method 393
getInitialContext method 351
getPort method 20
Graphical User Interfaces (GUIs)

accessing databases via 207-210
file I/O with 113-120
network programming with 28-36

H

HTTP protocol 4
GET method 240
POST method 240

HyperlinkEvent class 37
HyperlinkListener interface 37
HyperlinkUpdate method 37
Hypertext Mark-up Language (HTML) 234

GET method 240
HTML and JavaBeans 330-341
POST method 240

I

Icon interface 364
IllegalMonitorStateException class 68
Image class 360, 392

using 392-397
ImageIcon class 302, 360, 364, 392

using 397-400
ImageObserver interface 393
images, transferring and displaying

360-364
implicit objects in JSPs 283-285
InetAddress class 9-11

getByName method 9
InetSocketAddress class 76
init method 225, 385, 387
InputContext class 225
Interface Definition Language (IDL) 159

see also Java IDL
Internet 3-5
Internet Engineering Task Force (IETF) 4
Internet Explorer 383
Internet Inter-Orb Protocol (IIOP) 159
Internet Protocol (IP) addresses 3-4
Internet services 4-5
interrupt method 53
InterruptedException class 54, 68
IOException class 13, 22, 33, 80

in servlets 241

J

Jakarta Project 221
JApplet class 380, 381
JAR files 304-306
Java Database Connectivity (JDBC)

188-231
absolute method 211
afterLast method 215
beforeFirst method 215
Data Access Objects (DAOs) 226-231
Database Connection Pool (DBCP) 221
DatabaseMetaData interface 191, 204
databases

accessing via GUIs 207-210
accessing via JSPs 294, 326-330
modifying 199-202

via Java methods 215-220
DataSource interface, using 220-231
DATE type in SQL 204
DECIMAL type in SQL 204
DELETE statement in SQL 199, 410
DOUBLE type in SQL 204
DriverManager class 192, 193, 226
drivers 189
DROP statement in SQL 407
executeQuery method 193, 199
executeUpdate method 193, 199
first method 211
FLOAT type in SQL 204
forName method 192
getColumnType method 204
getColumnTypeName method 204
getConnection method 192, 193
getDate method 195
getFloat method 195
getInt method 195
getLong method 195
getMetaData method 204
getRow method 215
getString method 195
INTEGER type in SQL 204
JDBC-ODBC bridge driver 189
java.sql.Date class 195
last method 211
metadata 204-207
next method 211
NUMERIC type in SQL 204
ODBC data source, creating 190-191
previous method 211

Index 3

Java Database Connectivity (JDBC)
(Continued)

REAL type in SQL 204
relative method 211
ResultSet interface 191, 194

scrollable ResultSets 210-215
ResultSetMetaData interface 191, 204
rollback method 203
ROLLBACK statement in SQL 203
SELECT statement in SQL 199,

408-409
simple access 191-198
and SQL 189-190
SQLException class 196
Statement interface 191, 193
transactions 203
UPDATE statement in SQL 199, 410
VARCHAR type in SQL 204
versions 189-190

Java IDL 158-165
attribute keyword 161
exceptions 163
interface keyword 160, 161
mapping from 159
process 163-173
specification, structure of 159-163
types 162

Java Media Framework 372-378
ControllerEvent class 373, 374
ControllerListener interface 373
createPlayer method 373
getControlPanelComponent

method 373
getVisualComponent method 373
play method 370
Player class 373
RealizeCompleteEvent class 374

Java Naming and Directory Interface (JNDI)
222-223, 351

Java Plug-In 385
Java Remote Method Protocol

(JRMP) 158
Java Virtual Machine (JVM) 52
JavaBeans 226, 297-344

applications using 315-317
Bean Builder 298-301
bound properties 317-324
creating 301-307
JavaBeans Development Kit (BDK) 298
in JSPs 324-341

calling methods 326
HTML tags 330-341

property attribute 331
properties, exposing 307-311
PropertyChangeEvent class 318
PropertyChangeListener interface

318, 319
PropertyChangeSupport class 318, 319
responding to events 311-315

JavaServer Pages (JSPs) 278-296
accessing remote databases 294
application implicit object 284
config implicit object 284
compilation and execution 279-80
directives 280-281
error pages 291-294
exception implicit object 284
Expression Language (EL) 279
getAttribute method 284
getServletContext method 285
implicit objects 283-285
JavaBeans in 324-341

calling methods 326
HTML tags 330-341

JavaServer Pages Standard Tag Library
(JSTL) 278

name attribute 331
out implicit object 284
page implicit object 284
page tag 280
pre-compiled 280
rationale behind 278-279
request implicit object 284
response implicit object 284
scriptlets 282
and servlets 285
session implicit object 284
setAttribute method 283, 285
taglib tag 281
tags 280-283
workings of 285-290

JavaServer Pages Standard Tag Library
(JSTL) 278

JavaSoft 158
java.sql.Date class 195
JDBC-ODBC bridge driver 189
JEditorPane class 37, 38

setPage method 38
JFileChooser class 113-116

setFileSelectionMode method 113

4 Index

showOpenDialog method 114
showSaveDialog method 114

JTable class 207, 208
JNDI 222-223
JSTL 278

L

Lookup method 225

M

Manager class 373
media files, transferring 365-370
metadata in JDBC 204-207
multimedia 359-378

AudioClip interface 370, 401
Java Media Framework

372-378
loop method 371
newAudioClip method 370
play method 370, 371
Player class 373
playing sound files 370-372
RealizeCompleteEvent class 374
stop method 371
transferring and displaying images

360-364
transferring media files 365-370

multiplexing 75, 81
multithreading 51-74

deadlock 66-67
locks 65-74
multithreaded servers 60-65
notify method 68
notifyAll method 68
pre-emption 52
run method 52, 53-57
Runnable interface 52, 57-60

explicitly implementing
57-60

sleep method 53, 58
synchronising threads 67-74
wait method 68

N

Naming class 139
narrow method 351
New Input/Output (NIO) 74, 86
newAudioClip method 370
NNTP protocol 4

non-blocking I/O 74
servers 74-87

implementation 76-86
overview 74-76

notify method 68
notifyAll method 68
numeric fields, byte allocations 103

O

Object Management Group (OMG) 158
Object Request Broker (ORB) 158
ObjectInputStream class 110, 360, 365
ObjectOutputStream class 110, 126,

360, 365
Open Database Connectivity (ODBC) 189

data source 190-191
JDBC-ODBC bridge driver 189

Orb class 184
Orbix 158

P

packet-switched network 5-6
Permission class 154
persistence

in entity beans 346
in objects 184

play method 370, 401
policytool utility 154
pooling, of connections 190, 221
ports 2-3
POST method 240
pre-compiled JSPs 280
pre-emption 52

Q

quad notation 3

R

random access files 102-109
methods 103

random method 54
RandomAccessFile class 102, 103

methods 103
read method 80, 81, 86
rebind method 139
redirection 99-100
relational databases 188
Remote interface 138

Index 5

Remote Method Invocation (RMI) 136-155
basic process 136-137
compilation and execution 141-143
implementation 1374-141
Naming class 139
Permission class 154
policytool utility 154
primitive types in 137
rebind method 139
registry 139
Remote interface 138
RemoteException class 138
RemoteObject class 138
RMI-IIOP 184-185
RMISecurityManager class 154
SecureClassLoader class 154
Serializable interface used in 137
setSecurityManager method 154
skeletons 136, 137
security 153-155
SecurityManager class 154
stubs 136
UnicastRemoteObject class 138
using 143-153

Remote Method Invocation over Internet
Inter-Orb Protocol (RMI-IIOP)
184-185

RemoteException class 138, 346, 354
RemoteObject class 138
ResultSet interface 191, 194

scrollable ResultSets 210-215
ResultSetMetaData interface 191, 204
RMI 136-155
RMI-IIOP 184-185
RMISecurityManager class 154
rollback method 203
routing 5
run method 52, 53-57
Runnable interface 52, 57-60

explicitly implementing 57-60

S

SavePoint interface 190
savepoints 190
scriptlets in JSPs 282
SecureClassLoader class 154
SecurityManager class 154
SelectionKey class 77, 78, 80, 81

cancel method 81
channel method 80

readyOps method 79
Selector class 77, 81

select method 78
selectedKeys method 78, 80

selectors 75
sequential files 91
serial access files 91-97
serialisation 109-113

readObject method 110, 115, 360, 365
typecasting 110
and vectors 123-131
writeObject method 110, 115, 360, 365
see also Serializable interface

Serializable interface
and entity EJBs 354
in file handling 109
and multimedia 359
in RMI 137
in servlets 250
see also serialisation

ServerSocket class 12, 18
ServerSocketChannel class 76

configureBlocking method 76
open method 76

servlets
accessing databases 268-274
basics 234-235
cookies 260-268
destroy method 269
doGet method 240
doPost method 240
GenericServlet class 285
getParameter method 244
getSession method 249
getWriter method 241
HttpServlet class 269, 285
HttpServletRequest class 240, 249
HttpServletResponse class 240, 251
init method 225, 269
invoking Web page, the 239-240
and JSPs 285
passing data 242-249
RequestDispatcher class 255

forward method 255
sendRedirect method 251
Serializable interface in 250
Servlet interface 251
ServletContext interface 283,

284, 285
ServletException class 241, 269

6 Index

sessions 249-260
setContentType method 241
structure 240-242
testing 242
Web application, creating

237-239
session beans 345, 346
sessions 249-260
setPage method 37, 38, 39
setSecurityManager method 154
sleep method 53, 58
SMTP protocol 4
Socket class 12, 13, 14, 81, 360, 365
SocketChannel class 76

read method 80, 81, 86
socket method 81
write method 80, 86

sockets 3, 12-28
TCP 12-18
UDP 12, 18-28
using in Java 12-28

sound
in Applets 401-403
playing files 370-372
transferring files 365-370

SQLException class 196
stateful session beans 346
stateless session beans 346
Statement interface 191, 193
streaming 7
Structured Query Language (SQL)

189-190, 406-410
ALTER TABLE statement 407
CREATE TABLE statement 407
DATE type 204
DECIMAL type 204
DELETE statement 199, 410
DOUBLE type 204
DROP statement 407
FLOAT type 204
INSERT statement 199, 409
INTEGER type 204
NUMERIC type 204
REAL type 204
ROLLBACK statement 203
SELECT statement 199, 408-409

UPDATE statement 199, 410
VARCHAR type 204

stubs 136, 159, 347

T

tags
in deployment descriptor

<Context> tag 223
<DefaultContext> tag 223
<Host> tag 223
<Resource> tag 223
<ResourceParams> tag 223, 224

in JavaServer Pages 280-283
Telnet protocol 4
Thread class 52, 57, 58, 59, 61

extending 53-57
threads

basics 51-52
use in Java 52-60
see also multithreading

Tomcat 221, 230, 235-236, 237, 242
creating a Web application under

237-239
setting up 235-237

Transmission Control Protocol (TCP) 5-7
sockets 12-18

U

Uniform Resource Locator (URL) 4-5
UnknownHostException class 9
User Datagram Protocol (UDP) 7-8

sockets 12, 18-28

V

vectors
in file handling 120-123
and serialisation 123-131
Vector class 120, 123, 227

VisiBroker 158

W

wait method 68
Web pages, downloading 37-40
World Wide Web Consortium (W3C) 4

Index 7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

